
Physics 605: Solving 2D linear partial differential equations

Due: never

1 The diffusion equation

We are going to start by considering a simple partial differential equation, the

diffusion equation:
∂u(x, t)

∂t
= D

∂2u

∂t2
. (1)

Such an equation is used to describe the diffusion of particles in a fluid (where

u is the number density of particles) or the transport of heat through a material

(there it is usually called the heat equation and u is the temperature). Our

job will be to show that solving such an equation is helped by the vector space

apparatus we’ve developed. Before we get to the math, we need to deal with

some physics associated with this equation. Suppose the domain of x is between

0 and L. Integrate both sides of Eq. (1) within that domain to find

∂

∂t

∫ L

0

dx u(x, t) = D
∂u(x, t)

∂x

∣

∣

∣

L

0
. (2)

Using the interpretation of Eq. (1) as describing the diffusion of particles, we see

that the left hand side gives the change in time of the total number of particles.

The right hand side, on the other hand, tells you that the total number of

particles can change if and only if

J = D
∂u(x, t)

∂t

∣

∣

∣

0,L
6= 0, (3)

on at least one boundary. We interpret J as the flux of particles escaping through

one or the other boundary. Therefore, we expect J = 0 on the boundary. This

gives us a boundary condition,

D
∂u(x, t)

∂t

∣

∣

∣

0,L
= 0. (4)

We want to solve the diffusion equation subject to this boundary condition on

both boundaries.

Consider the set of functions in x such that ∂f(x)/∂x = 0 on x = 0 and

x = L. This set of functions forms a vector space. Furthermore, consider the
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inner product

〈f |g〉 =
∫ L

0

dx f(x)g(x). (5)

Theorem: The operator ∂2/∂x2 is self-adjoint.

∫ L

0 dx f(x) ∂2

∂x2 g(x) = −
∫ L

0 dx [ ∂
∂xf(x)][

∂
∂xg(x)] =

∫ L

0 dx [ ∂2

∂x2 f(x)]g(x)

by integrating-by-parts. The integration-by-parts works because

∂f/∂x = 0 for all functions in our vector space so that the boundary

term vanishes.

Theorem: The eigenvalues of L = ∂2/∂x2 are either 0 or negative (non-

positive).

To prove this, let |v〉 be an eigenvector with eigenvalue λ and com-

pute |v|L〉 = λ 〈v|v〉. However, note that

〈v|Lv〉 = −
∫ L

0

dx

(

∂v

∂x

)2

(6)

after one integration by parts. Therefore, λ ≤ 0.

Now we use the fact a fact that we will not prove: the eigenvectors of a

self-adjoint operator in a space of functions with this inner product can form

an orthonormal basis for the entire space. Therefore, we want to find the eigen-

vectors of ∂2/∂x2. Let’s do that by directly solving the equation:

∂2

∂x2
u(x) = −λ2u(x). (7)

Any solution can be written as u(x) = C1 sin(λx) + C2 cos(λx). To apply the

boundary conditions, we note that

∂u

∂x
= λC1 cos(λx) − λC2 sin(λx). (8)

Setting x = 0 and x = +L tells us that

C − 1 = 0 (9)

λC2 sin(λL) = 0.

We can obviously solve this with C1 = C2 = 0, but that is just zero. Notice,

however, that we can also choose λ = πn/L for any integer n and C1 = 0 as

well. We conclude that there is a set of nontrivial solutions of the form

|n〉 = 1√
L
cos

(πnx

L

)

. (10)
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These functions are orthonormal (the factor in front is the normalization). More-

over, we found that – with these boundary conditions – we only need n ≥ 0.

And by the theorem we didn’t prove, we also know that these functions form a

basis for the space of possible functions satisfying our boundary conditions.

Using this result, we notice that any solution u(x, t) =
∑∞

n=0 Cn(t) |n〉. Sub-
stituting this into our diffusion equation gives

∞
∑

n=0

[

Cn(t)

∂t
+D

(πn

L

)2

Cn

]

|n〉 = 0. (11)

Since |n〉 form an orthonormal basis, the coefficients must individually vanish.

Therefore,
∂Cn

∂t
+

Dπ2n2

L2
Cn = 0. (12)

Therefore, Cn = c̃ne
−Dπ2n2t/L2

. The most general solution satisfying our

boundary conditions is, therefore,

u(x, t) =

∞
∑

n=0

c̃ne
−Dπ2n2t/L2 1√

L
cos

(πnx

L

)

. (13)

Setting t = 0 gives

u(x, 0) =
∞
∑

n=0

c̃n |n〉 . (14)

Since this is a basis, we see that we can set the c̃n by decomposing the initial

condition, u(x, 0) into a linear combination of its eigenfunctions. In particular,

c̃n = 〈n|u(t = 0)〉 . (15)

What we just went through is a version of “separation-of-variables.” By

expanding in eigenfunctions of ∂2/∂x2 we were able to separate t and x.

Now let’s look at a variant of this problem. Suppose that we have different

boundary conditions: D∂u/∂x
∣

∣

L
= J0 and D∂u/∂x

∣

∣

0
= J0. In this case we have

a constant flux of particles in one side and an equal flux of particles leaving

through the other side. Unfortunately, the space of functions satisfying this

property is not a vector space. We can, however, write

u(x, t) =
J0
D

x+ δu(x, t). (16)

In other words, we have written u as the sum of a solution of ∂2u0/∂x
2 = 0

satisfying the boundary conditions and a time-dependent δu that still satisfies
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the diffusion equation,
∂δu

∂t
= D

∂2δu

∂x2
. (17)

The advantage is that now, δu satisfies boundary conditions such that ∂δu(x, t)/∂x
∣

∣

0,L
=

0 and the previous analysis applies exactly.

2 Two more PDE examples

2.1 Types of PDEs

PDEs, especially second order ones, can be classified into one of three types.

The diffusion equation is the canonical example of the first type, parabolic; so

is Schrödinger’s equation. The other two types of equations are

∂2h

∂t2
− c2

∂2h

∂x2
= 0 hyperbolic

∂2φ

∂x2
+

∂2φ

∂y2
= 0 elliptic.

To distinguish them formally, you consider only the highest-order derivative

terms. Since most equations we will discuss here are second-order, let’s focus

on second order equations. Those second-order terms can always be put into

the form
2

∑

i=1

2
∑

j=1

σij
∂2

∂xi∂xj
f(x1, · · · , xn). (18)

The matrix whose components are σij is called the symbol of the differential

equation.

Definition: In two dimensions, a PDE is called

hyperbolic det σ < 0

parabolic det σ = 0

elliptic det σ > 0

In higher dimensions, the relative signs of the eigenvalues of σij determines

the character of the equation. If all eigenvalues have the same sign, the equation

is elliptic, if one eigenvalue has a different sign than the rest then the equation

is hyperbolic and if one eigenvalue is zero (and the rest have the same sign) the

equation is hyperbolic. But other situations of a more mixed and complicated

character exist.
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2.2 The Wave Equation

Consider a string tied at both ends to a wall and under tension. It satisfies the

equation
1

c2
∂2h

∂t2
=

∂2h

∂x2
. (19)

This is the wave equation. Again, we will solve it by expanding h(x, t) in eigen-

functions of ∂2/∂x2. Note that the vector space of functions we are considering

now satisfies the boundary conditions h(L) = 0 and h(0) = 0. Therefore,

|n〉 = 1√
L
sin

(πn

L
x
)

. (20)

We write

h(x, t) =

∞
∑

n=1

Cn(t) |n〉 (21)

and derive an equation for the coefficients of Cn(t). These are

∂2Cn

∂t2
= −c2π2n2

L2
Cn. (22)

Consequently, the general solution has the form

h(x, t) =

∞
∑

n=1

[

c̃n sin (cπnt/L) + d̃n cos (cπnt/L)
] 1√

L
sin

(πnx

L

)

. (23)

In this case, there are two coefficients per n, which means that we need two

conditions on h(x, 0) to fix them. In a typical case, you must provide values for

h(x, 0) = f(x) and ∂h(x, t)/∂t
∣

∣

t=0
= v(x). Given these choices, we can extract

the coefficients to be

c̃n =
L

πcn
〈n|v〉

d̃n = 〈n|f〉 .

The solution is then

h(x, t) =
1√
L

∞
∑

n=1

[

〈n|f〉 sin(cπnt/L) + L 〈n|v〉
πcn

cos(cπnt/L)

]

sin(πnx/L) (24)

in terms of the initial conditions.
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2.3 Laplace’s equation

Finally consider Laplace’s equation, which arises in E&M. This is

∂2φ

∂x2
+

∂2φ

∂y2
= 0. (25)

Let’s assume that φ(0, y) = φ(L, y) = 0. Then we find a general solution

φ(x, y) =

∞
∑

n=1

[

c̃n cosh(πny/L) + d̃n sinh(−πny/L)
] 1√

L
sin

(πnx

L

)

. (26)

Let’s see what happens if we try to solve Laplace’s equation using initial

conditions. We wish to set

φ(x, 0) = f(x), ∂φ
∂y

∣

∣

∣

y=0
= g(x) (27)

Then
φ(x, 0) = f(x) =

∑∞
n=1 c̃n

1√
L
sin

(

πnx
L

)

∂φ(x,y)
∂y

∣

∣

∣

y=0
= g(x) = − π

L3/2

∑∞
n=1 nd̃n sin

(

πnx
L

)

.

(28)

Hence,

〈n|f〉 = c̃n

− L

πn
〈n|g〉 = d̃n.

The solution is

φ(x, y) =
1√
L

∞
∑

n=1

[

〈n|f〉 cosh(πny/L) + 〈n|g〉L
πn

sinh(πnx/L)

]

sin(πnx/L)

(29)

in terms of “initial” conditions at y = 0. Suppose we, instead, try to solve the

boundary value problem φ(x, 0) = F (x) and φ(x, L) = G(x). Then we have

φ(x, y) =
1

2
√
L

∞
∑

n=1

[

〈n|F +G〉 cosh(πny/L)
cosh(πn)

+ 〈n|F −G〉 sinh(πny/L)
sinh(πn)

]

sin
(πnx

L

)

.

3 Ill-posed problems

Hadamard (in 1902) classified partial differential equation (PDE) problems as

being well-posed or ill-posed. A well-posed problem satisfied three conditions:
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1. There are solutions.

2. The solutions are uniquely specified by the boundary conditions.

3. The solution’s behavior changes continuously with the initial/boundary

conditions.

Not all interesting problems are well-posed; not even all interesting problems in

physics are well-posed. One example of a well-posed problem is Laplace’s equa-

tion specified with boundary conditions (these are called Dirichlet boundary

conditions). Conversely, Laplace’s equation also provides us with an example

of an ill-posed problem. The solution of Laplace’s equation fails to change con-

tinuously when initial conditions are specified (the Cauchy problem).

The issue can be seen in Eq. (29) when one considers two nearby initial

conditions. Lets look, specifically at what happens to the solution at y = L.

Then

φ(x, L) =
1

2
√
L

∞
∑

n=1

[(

〈n|f〉+ 〈n|g〉L
πn

)

eπn +

(

〈n|f〉 − 〈n|g〉L
πn

)

e−πn

]

. (30)

It seems clear that small changes in 〈n|f〉 and 〈n|g〉, especially in modes of

large n, lead to potentially gigantic changes in φ(x, L). Indeed, the larger n,

the larger the change in φ(x, L) no matter how small the error in 〈n|f〉 or

〈n|g〉 actually is. This mathematical fact prevents us from solving the Cauchy

problem for Laplace’s equation on a computer – essentially, small errors that

occur on the computer aways end up dominating the solutions. In contrast,

for the wave equation, there are no exponentials and the solutions tend to be

bounded everywhere with respect to the initial conditions.

There is also a class of well-posed problems that are ill-conditioned. An

error in the initial conditions of an ill-conditioned problem grow as the solution

propagates. One can think of the classic case of chaotic trajectories in classical

mechanics. For example, two billiard balls with very nearby initial conditions

will eventually diverge from each others’ paths dramatically even while the balls

remain neatly on the table.
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4 Characteristics and Hyperbolic Equations

4.1 The wave equation as an example

Hyperbolic equations are special. Consider the wave equation

[

∂2

∂t2
− c2

∂2

∂x2

]

h(x, t) = 0. (31)

In particular, define

2∂± =
∂

∂t
± c

∂

∂x
. (32)

Then the wave equation can be rewritten as

4∂+∂−h(x, t) = 0. (33)

Indeed, this suggests making a change of variables, u± = x ± ct. Then ∂± =

∂/∂u±.

Rewriting the wave equation, as we did in Eq. (33), shows that all solutions

to the wave equation have the following form:

h(u+, u−) = f(u+) + g(u−). (34)

That is, any solution is a sum of an arbitrary function of u+ and an arbitrary

functions of u−. Or, put another way,

h(x, t) = f(x+ ct) + g(x− ct). (35)

The lines of constant x ± ct are called characteristics or characteristic

curves. The existence of characteristics turns out to be a generic feature of

hyperbolic differential equations. Often, their solution, or at least the equation,

can be simplified dramatically by finding the characteristic curves.

There is a sense in which the characteristics are the lines along which infor-

mation is propagated by the solutions. If we want to apply initial conditions,

h(x, 0) and ∂h(x, t)/∂t|t=0 then

f(x) + g(x) = h(x, 0)

c [−f ′(x) + g′(x)] =
∂h(x, t)

∂t

∣

∣

∣

∣

t=0

.

There is enough information in the functions h(x, 0) and ∂h(x, t)/∂t|t=0 to de-

termine both f(u+ and g(u−) completely. But this need not always be the
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case. We might imagine specifies boundary/initial conditions on an entire curve

mixing x and t. For example, if we specify h on u+ = 0 and a derivative of

h on u+ = 0, we will be unable to determine f(u+) at all and have too many

conditions on h(u−).

5 Sturm-Liouville Operator

5.1 General theory

The most general real, self-adjoint, second-order one-dimensional linear operator

can be written as

Lf =
1

W (x)

[

∂

∂x

(

p(x)
∂f

∂x

)

− q(x)f(x)

]

(36)

where W (x) > 0 and p and q are real. This is the Sturm-Liouville Opera-

tor. Many second-order ordinary differential equations in physics occur in this

manner. Indeed, let

L′ = r(x)
∂2

∂x2
+ s(x)

∂

∂x
+ z(x). (37)

Then L′ is a Sturm-Liouville operator with p(x) = exp
[∫ x

a
dξ s(ξ)/r(ξ)

]

,W (x) =

p(x)/r(x) and q(x) = −z(x)W (x).

This general operator is only self-adjoint under certain boundary conditions

and with the inner product 〈f |g〉 =
∫ b

a dx W (x)f∗(x)g(x). To see this, compute

〈f |Lg〉 = p(x)f∗(x)
∂g

∂x

∣

∣

b

a
− p(x)

∂f∗(x)

∂x
g(x)

∣

∣

b

a
+ 〈Lf |g〉 . (38)

It is self-adjoint so long as the entire expression evaluated at the boundaries

vanish (or the functions are periodic in the domain).

Some of the most common, canonical boundary conditions are:

f = 0 Dirichlet boundary conditions
∂f
∂x = 0 Neumann boundary conditions.

(39)

There are other ways to satisfy these boundary conditions, however.

The eigenfunctions of L |f〉 = λ |f〉 give the Sturm-Liouville equation,

∂

∂x

[

p(x)
∂f(x)

∂x

]

+ q(x)f(x) = λW (x)f(x). (40)

Generically speaking, equations like this are still challenging to solve and his-

torically led to the development of special functions.
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5.2 Laplace’s equation in polar coordinates

Consider Laplace’s equation in polar coordinates,

x = r cos θ

y = r sin θ.

As you can compute readily, Laplace’s equation takes the form

1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2
∂2φ

∂θ2
= 0 (41)

and the inner product in 2D has the form 〈f |g〉 =
∫

drdθr f∗(r, θ)g(r, θ). We

can write

φ(r, θ) =

∞
∑

m=∞
cm(r)eimθ , (42)

using the fact that eimθ form an orthogonal basis with inner product 〈f |g〉 =
∫ 2π

0 dθf∗(θ)g(θ). Then we have

0 =
1

r

∂

∂r

(

r
∂cm(r)

∂r

)

− m2

r2
cm(r) (43)

〈fm|gm〉 =

∫ R

r0

drr f∗
m(r)gm(r).

This is precisely the form of a Sturm-Liouville problem with W (r) = r, p(r) = r

and q(r) = −m2/r2 – one equation in each sector of m. Note that something

strange happens at r = 0; therefore we explicitly write inner and outer bounds

on r. We can always make r0 as small as we want and R as large as we want.

We attempt to solve the equations with cm = rα for some power α. This

gives
(

α2 −m2
)

rα−2 = 0, (44)

so α = ±m. When m = 0, this only provides one solution. It is easily checked

that c0 = ln r is also a solution for m = 0, Consequently,

φ(r, θ) =
∑

m 6=0

[

c̃mrm + d̃mr−m
]

eimθ + c̃0 + d̃0 ln r, (45)

where the sum over m includes every integer except 0. Are these functions rα

orthogonal? No – nor do they have to be. They are all eigenfunctions with zero

eigenvalue; there is no theorem that ensures they must be orthogonal.
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6 Separation of variables in higher dimensions

Let’s now solve Laplace’s equation in 3D,

∇2u = 0, (46)

in a cubic domain, D, defined by 0 ≤ x, y, z ≤ L.

6.1 Boundary conditions and vector spaces

To choose boundary conditions, we set u(x, y, z) on the boundary of the domain.

Let us choose u(x, 0, 0) = u(x, L, 0) = u(x, 0, L) = u(x, L, L) = 0 and u(0, y, z)

and u(L, y, z) to be nonzero. With these boundary conditions, we note that ∇2

is self-adjoint with the inner product

〈f |g〉 =
∫

D
dV f∗(x, y, z)g(x, y, z) (47)

and that the eigenvalues of ∇2 are always negative (Prove these statements

using integration-by-parts).

6.2 “Separation of variables”

We start by choosing one direction, say z, and expanding in eigenfunctions of

∂2/∂z2,
√

2/L sin(πnx/L) ≡ |nz〉. Then

φ(x, y, z) =

∞
∑

n=0

cn(x, y) |nz〉 =
∞
∑

n=0

cn(x, y)

√

2

L
sin

(πnz

L

)

. (48)

This gives us an equation for the coefficients cn(x, y). This equation is
[

∂2

∂x2
+

∂2

∂y2

]

cn(x, y)−
(πn

L

)2

cn(x, y) = 0. (49)

This equation appears to be an eigenfunction equation for the two-dimensional

Laplacian.

We proceed similarly: choosing y and expanding each cn(x, y) in a basis of

eigenfunctions cn(x, y) =
∑∞

m=0 dnm(x) |my〉 yields
∂2dnm
∂x2

−
[

(πm

L

)2

+
(πn

L

)2
]

dnm = 0. (50)

This equation is an ordinary differential equation which we can solve for each

dnm(x). Let λ2
nm ≡

(

πm
L

)2
+
(

πn
L

)2
.This gives

dnm(x) = Anmeλnmx +Bnme−λnmx. (51)
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We could have made this decomposition in any combination of the axes

and we would, in all cases, obtain a perfectly reasonable formal solution to

Laplace’s equation. In practice, you should choose the most convenient way to

separate variables to solve your problem. Two of the directions will involve an

expansion in trigonometric functions and the remaining variable will be solved

by exponentials.
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