
Physics 605: Electrostatics

Due: never

Maxwell’s equations are

∇ ·E = 4πρ ∇ ·B = 0

∇×E = − 1
c
∂B
∂t ∇×B = 4π

c J + 1
c
∂E
∂t

(1)

in cgs units. We also have the Lorenz force law,

F = qE + q
v

c
×B, (2)

for a charge q moving with velocity v in an electric and magnetic field.

In the limit of electrostatics and magnetostatics, we assume that ρ, E and

B do not change with time. In that case, we obtain

∇ ·E = 4πρ ∇ ·B = 0

∇×E = 0 ∇×B = 4π
c J

(3)

Our job, in electrostatics, is to solve these equations for E and B, given ρ and

J.

1 Helmholtz theorem

Since Maxwell’s equations are written in terms of the divergence and curl of a

vector field, we could ask how much we know about a vector field if we specify

just its divergence and curl. The answer is in the form of the Helmholtz theorem.

Theorem (Helmholtz): any vector field, E, for which |E| vanishes more rapidly

than 1/|r| as |r| → ∞ can be written as E = −∇φ+∇×A, where

φ = − 1

4π

∫
d3r′
∇′ ·E(r′)

|r− r′|

A =
1

4π

∫
d3r′
∇′ ×E(r′)

|r− r′|
.

That is, any vector field is the gradient of a scalar and the curl of another vector

field.

To prove this, we assume E = −∇φ + ∇ × A. Computing the curl and

divergence of this equation gives

∇ ·E = −∇2φ ∇×E = ∇2A−∇(∇ ·A). (4)
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The first equation is the Poisson equation, which we already know how to solve

when E (and φ) falls of sufficiently rapidly. It’s solution is

φ = − 1

4π

∫
d3r′
∇′ ·E(r′)

|r− r′|
. (5)

The second equation seems more difficult. If we assume ∇ ·A = 0, however, we

again obtain ∇× E = ∇2A which we can solve for each individual component

of A. Consequently,

A =
1

4π

∫
d3r′
∇′ ×E(r′)

|r− r′|
. (6)

As a final step, let’s try to compute ∇·A for this solution. In order to compute

it, we need an identify:

∇ 1

|r− r′|
= −∇′ 1

|r− r′|
. (7)

Therefore,

∇ ·A = − 1

4π

∫
d3r′ [∇′ ×E(r′)] · ∇′ 1

|r− r′|

=
1

4π

∫
d3r′∇′ · ∇′ ×E(r′)

1

|r− r′|
. (8)

The last step is an integration-by-parts. Since the divergence of a curl is zero,

we find that our solution naturally satisfies our constraint.

We might also ask whether we are missing something in this decomposition.

In other words, maybe E = −∇φ+∇×A + V. If so, however, ∇ ·V = 0 and

∇ ×V = 0. However, ∇ × ∇ ×V = ∇2V − ∇(∇ ·V) = ∇2V = 0. So each

component of V would necessarily satisfy Laplace’s equation with |V| → 0 as

|r| → ∞. As we will show in the next section, this implies that V = 0.

1.1 Uniqueness of solutions to Laplace’s equation

Suppose ∇2φ = 0 and φ is specified on the boundary of some domain, D. If

∇2φ2 = 0 and satisfies the same boundary condition then ∇2(φ− φ2) = 0 with

φ− φ2 = 0 on ∂D. So here we have the same problem as in the last section.

Theorem: If ∇2φ = 0 and φ = 0 on the boundary of some domain, D, then

φ = 0 everywhere inside the domain.

To prove this, consider
∫
D d

3rφ∇2φ, which is just zero. Integrating

by parts gives

0 = −
∫
D
d3r (∇φ)

2
+

∮
∂D

da · ∇φ φ. (9)
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The boundary term, obviously, equals zero so
∫
D d

3r (∇φ)
2

= 0.

Therefore, φ is a constant and must, in fact, equal 0.

If we example the proof again, we see that it still works if we specify n · ∇φ,

where n is the unit normal vector to ∂D.

1.2 Curl-free vector fields

The electric field has an interesting and special property, ∇× E = 0. Now we

see, from the Helmholtz theorem, that E = −∇φ.

Suppose we take a small “disk” in space, called D. This doesn’t have to be a

perfect disk; it need only have the topology of a disk. This means, in particular,

that it is two-dimensional and that its boundary, denoted ∂D, is a closed curve

in space. Stokes’ theorem then tells us that∫
D

da · ∇ ×E =

∮
∂D

dl ·E = 0. (10)

This is independent of the shape of the disk, D, itself.

There is a lot to decompress in Stokes’ theorem mathematically. First, we

could ask how we compute the two integrals involved. Second, we could ask

why Stokes’ theorem is true at all. I refer you to Griffitth’s excellent book on

electricity and magnetism on the why of Stokes’ theorem (or for those of you

crazy enough, Spivak’s book “Calculus on Manifolds”).

Let’s try to figure out how to compute the two integrals. Let’s start with the

right-most integral – the path integral. Let’s define a path, l(s), not necessarily

closed, as a function of a single parameter. Then dl = ds dl/ds. The vector

Figure 1: The infinitesimal element dl(s) defined as a limiting process.
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Figure 2: A surface is decomposable into infinitesimal parallelograms whose

area is given by the cross-product of the vectors spanning two adjacent sides.

dl/ds is always tangent to l(s). To see this, consider the limiting process shown

in Fig. 1. Hence, ∫ s2

s1

ds
dl

ds
·E (l(s)) . (11)

Since E = −∇φ, we have∫ s2

s1

ds
dl

ds
·E (l(s)) . =

∫ s2

s1

ds
dl

ds
· ∇φ (l(s))

=

∫ s2

s1

ds
d

ds
φ (l(s)) = φ(l(s2))− φ(l(s1)). (12)

Hence, we see directly that
∮
dl ·E = 0 for a curl-free vector field.

The left-hand side is more complicated to compute. To do so, we must write

an equation for a surface, R(ξ1, ξ2). We can use this parametrization to write

down two vectors that are tangent to the surface, ∂1R and ∂2R (think about

why this must be so). Then

da = dξ1dξ2 ∂1R× ∂2R. (13)

Why? Consider decomposing the surface into infinitesimal paralellograms as in

Fig. 2. The infinitesimal parallelogram spanned by dξ1∂1R and dξ2∂2R. The

magnitude of the cross-product is simply the area of the parallelogram. The
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direction is the unit normal vector to the parallelogram. Hence,∫
D

da · ∇ ×E =

∫
dξ1dξ2 ∂1R× ∂2R · (∇×E) . (14)

2 Gauss’ Law

Theorem (Gauss?): Let V be a volume with boundary ∂V . Then∫
V

d3x 4πρ =

∫
V

d3x ∇ ·E =

∫
∂V

da ·E, (15)

where da is the infinitesimal area element on ∂V and is oriented outward with

respect to the volume, V .

We can use this theorem to find some important, particularly symmetric

solutions. First, consider a sphere of radius R with a uniform charge density, ρ.

What is the electric field outside of this sphere? Since the charge distribution is

symmetric with respect to rotations, the electric field must also be. In addition,

since the charge distribution is invariant under reflections, E must also be. These

symmetries are highly constraining. In particular, they require that E ∝ E(r)r̂

so that the electric field is always pointing radially outward or inward.

Consider a spherical region of radius r > R. Then
∫
V
d3x 4πρ = 4πQ, where

Q is the total charge. However,∫
∂V

da ·E = 4πr2 E(r). (16)

Hence, E(r) = Q/r2 and E = Qr̂/r2.

Let’s consider the limit that R → 0 while
∫
R
d3x ρ = Q remains constant.

This is the limit of a point charge. Clearly, we conclude, the electric field of a

point charge is

E(r) =
Qr

r2
. (17)

There is one difficulty here. Suppose you were to calculate ∇ · E – you would

find 0. Then, by Gauss’ law,∫
d3x ∇ ·E =

∫
d3x 0 = 4πQ. (18)

We also know that ρ = 0 for any point away from the origin. What we conclude

is that ∇ ·E = δ(x)δ(y)δ(z). So we have the following result,

−∇2

(
Qr̂

r2

)
= 4πδ3(x), (19)

our first solution to the Poisson equation.
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3 Boundary conditions

3.1 Charged surfaces

Often in electrostatics, one has a charged surface, with charge per unit area σ.

Consider a small cylinder of radius r and height h perpendicular through the

surface. The total charge enclosed is Q = σπr2. Gauss’ law tells us that∮
da ·E = 4πQ. (20)

This integral decomposes into three distinct parts, the two end caps of the

cylinder and the actual round part of the cylinder. Notice that,∫
round part

da ·E→ 0 (21)

as r → 0 and h → 0. Therefore, only the end caps contribute to this integral.

Hence,

πr2
[
n ·E|+ − n ·E|−

]
≈ 4πσπr2, (22)

where n is normal to the surface and the ± refer to the electric fields on either

side of the surface, with + in the direction of the surface normal. Hence, E is

discontinuous across a charged surface with

n ·E|+ − n ·E|− = 4πσ. (23)

Therefore,

n · ∇φ|+ − n · ∇φ|− = −4πσ. (24)

This tells us what happens to the normal component of E. What about

the tangential components? To answer this, consider a very small rectangular

loop penetrating the surface oriented so one side is normal to the surface. Let’s

call A the area contained by the loop and ∂A the rectangular boundary. Then

Stokes’ theorem says ∮
∂A

dl ·E =

∫
A
da · ∇ ×E = 0. (25)

The left hand side of Eq. (25) can be decomposed into its individual sides.

These give
4∑
i=1

∫
i

dl ·E = 0, (26)
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where the subscript i labels which of the four sides we are considering. In the

limit that the area of the loop vanishes, we find that every pair of adjacent sides

cancel. In particular, t ·E|+− t ·E|− = 0 for any vector tangent to the surface,

t. In terms of the scalar potential, φ, this gives

t · ∇φ|+ = t · ∇φ|−. (27)

Suppose that φ is discontinuous across the charged boundary. Then there is no

reason for the tangential derivatives of φ to be continuous. Similarly, φ cannot

be continuous if the tangential derivatives themselves are discontinuous. This

boundary condition, therefore, translates to the need to keep φ continuous, even

as its normal derivative is not.

3.2 Conducting surfaces

If a material is a conductor, the charges are mobile. Since like charges repel,

we know that all the excess charge in a conductor will migrate to the surface.

And the charges themselves must arrange themselves on that surface so that the

electric field is zero. Why? Because if it was not zero, the charges would move

and, therefore, not be in equilibrium. Finally, we conclude that the potential φ

at a conductors surface is constant. And any conductor which is connected to

another conductor must be at the same constant potential.

Even at constant potential, this does not mean that a conductor has no

excess charge. Indeed, the boundary conditions for the electric field and the

vanishing of the electric field inside the conductor immediately imply,

n ·E|boundary = 4πσ. (28)

3.3 Dipole surfaces

There is another kind of surface to consider – a surface of dipoles. The best

approach to this is to imagine you have a slab of material of width W with

a negative surface charge density σ on one boundary and −σ on the other

boundary. For now, assume the slab is flat and perpendicular to the ẑ axis.

One boundary is at z = −W/2 and the other at z = W/2.

How do we obtain a surface of dipoles from this? Consider a patch of charge,

of area dA, on the surface, ±dQ = ±σdA. A pure dipole is a configuration of

charge that has only terms with ` = 1 and no other. On a homework, you
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proved that two opposite charges, ±q, separated by a become a pure dipole in

the limit that q → 0 while qa remains constant. We obtain pure dipoles by

taking the limit W → 0 while dQW remains constant.

There are three regions in this problem, two away from the slab and one

inside the slab. Therefore,

φ =


a− + b−(z +W/2), z < −W/2

a0 + b0z, −W/2 < z < W/2

a+ + b+(z −W/2), z > W/2.

(29)

The continuity of φ implies that a− = a0 − b0W/2 and a+ = a0 + b0W/2. The

discontinuity of ∂zφ tells us that b0 − b− = −4πσ and b+ − b0 = 4πσ. Putting

these together gives a potential

φ =


a0 − b0W/2 + (b0 + 4πσ)(z +W/2), z < −W/2

a0 + b0z, −W/2 < z < W/2

a0 + b0W/2 + (b0 + 4πσ)(z −W/2), z > W/2.

(30)

Now consider ∂zφ(z = −W/2) = b0 + 4πσ. This is the magnitude of the

electric field on one side of the slab, E|−. Therefore, b0 = E|− − 4πσ. On the

other side of the slab, ∂zφ(z = W/2) = b0 + 4πσ, so apparently the electric field

is continuous as W → 0. However, if we compute φ(z = W/2)−φ(z = −W/2) =

b0W = E|−W − 4πσW . Letting σW ≡ p, the dipole moment per unit area, be

constant, we obtain the startling result that

φ(z = W/2)− φ(z = −W/2) = −4πp. (31)

In other words, the potential itself is discontinuous across a dipole surface, but

not the electric field. Since surfaces are all locally flat and W is always a small

length, this result holds even for curved surfaces.

4 An example problem

Consider a conducting sphere of radius R held at potential 0 in an applied

electric field, E0. Find the electric field everywhere.

Without loss of generality, we assume E0 = E0ẑ so that the problem has

azimuthal symmetry. Everywhere outside the sphere, the potential is

φ = −E0r cos θ +

∞∑
`=0

a`
r`+1

P`(cos θ). (32)
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We require φ = 0 when r = R so

0 = −E0RP1(cos θ) +

∞∑
`=0

a`
R`+1

P`(cos θ). (33)

Since the P` are orthogonal, we see that only the a1 coefficient is nonzero. And,

in particular,

a1 = E0R
3, (34)

so

φ = −E0

[
r +

R3

r2

]
cos θ. (35)

Now we can compute the surface charge density on the surface of the con-

ducting sphere. This yields

σ =
E0

2π
cos θ. (36)

5 Method of images - repeated from Green func-

tions

Let’s consider the problem of solving

∇2G(r, r′) = 4πδ3(r− r′) (37)

in the positive half space z > 0 with the boundary condition that G = 0 when

z = 0. We also assume that φ(r)→ 0 as |r| → ∞.

We’re going to derive a solution to this problem by taking advantage of the

one we already have. In order to make our solution work, however, we need to

prove something about the Laplacian that hasn’t quite come up before.

Theorem: A solution to Laplace’s equation in a domain D for which φ(r) is

specified on the boundary ∂D is unique.

Suppose there were two solutions, φ1 and φ2, sharing the same

boundary condition on ∂D. Then φ = φ1 − φ2 would also be a

solution with φ = 0 on ∂D. What we really want to prove, then,

is that φ = 0 on ∂D implies it is zero throughout D. If so, then

φ1 = φ2 and we would have uniqueness.

To prove this last part, consider ∇(φ∇φ) = (∇φ)2 + φ∇2φ. Since

∇2φ = 0 by construction, we have ∇(φ∇φ) = (∇φ)2. Integrating
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both sides over volume and using the divergence theorem on the left

side, we obtain ∮
∂D

da · ∇φ φ =

∫
D
dV (∇φ)2. (38)

The boundary condition we derived for φ implies that the left hand

side is zero. Therefore, the right hand side must be as well. Since

the integrand is always positive or zero, it must be zero. Therefore,

we obtain the result that φ must be constant and, since it is zero on

the boundary, it must be zero everywhere.

Uniqueness helps us because of the following fact:

φ =
1

|r− x′x̂ + y′ŷ + z′ẑ|
− 1

|r− x′x̂ + y′ŷ − z′ẑ|
(39)

vanishes on the z = 0 plane. Consequently, when z > 0, it solves the Poisson

equation with precisely the boundary condition we want. Since the solution is

unique, we can stop looking for solutions.

Indeed, if G(x− x′, y − y′, z − z′) is a Green function whose arguments are

even, then G(x− x′, y− y′, z − z′)−G(x− x′, y− y′, z + z′) always vanishes on

the z = 0 plane. The method of images turns out to be useful in many different

linear equations!

6 Energy

We can also associate an energy with an electrostatic configuration of charges,

though we must be oddly clever to do this properly. Suppose you have a config-

uration of charges with electrostatic potential φ(r). Then the work of bringing

a new charge, q, from infinity to a definite position r is space can be computed

to be

W = q

∫
dl · ∇φ = qφ(r). (40)

Therefore, the work required to bring N charges, q1, q2, · · · , qN to positions

r1, r2, · · · , rN is

W =
∑
i<j

qiqj
|ri − rj |

=
1

2

∑
i6=j

qiqj
|ri − rj |

. (41)
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The last step simply takes advantage of the symmetry to increase the range of

the sum.

We want to take the expression for the work and rewrite it in terms of the

electric field. This almost works – if we define φi(r) as the potential for all

the charges but the ith, then W = (1/2)
∑N
i=1 qiφi(ri). Let’s suppose instead,

however, that we don’t have Dirac delta point charges, but lumps of charge

described by a distribution ρ0(r). The force on a lump of charge then generalizes

to

F =

∫
d3rρi(r− ri)φ(r) =

∫
d3rρi(r)φ(r + ri). (42)

Similarly, the work done moving a lump of charge into an already existing

distribution of charged lumps becomes

W =
1

2

∑
i 6=j

∫
d3rd3r′

ρi(r− ri)ρj(r
′ − rj)

|r− r′|

=
1

2

∑
ij

∫
d3rd3r′

ρi(r− ri)ρj(r
′ − rj)

|r− r′|
− 1

2

N∑
i=1

∫
d3rd3r′

ρi(r− ri)ρj(r
′ − ri)

|r− r′|
.

Since
∑N
i=1 ρi(r− ri) = ρ(r) is the entire distribution of charge we have assem-

blied, we find

W =
1

2

∫
d3rd3r′

ρ(r)ρ(r′)

|r− r′|
− 1

2

N∑
i=1

∫
d3rd3r′

ρi(r− ri)ρi(r
′ − ri)

|r− r′|

=
1

2

∫
d3rρ(r)φ(r)− 1

2

N∑
i=1

∫
d3rd3r′

ρi(r− ri)ρi(r
′ − ri)

|r− r′|

= − 1

8π

∫
d3r∇2φ φ− 1

2

N∑
i=1

∫
d3rd3r′

ρi(r− ri)ρi(r
′ − ri)

|r− r′|

=
1

8π

∫
d3rE2(r)− 1

2

N∑
i=1

∫
d3rd3r′

ρi(r− ri)ρi(r
′ − ri)

|r− r′|
. (43)

The last term is actually independent of the positions ri. Indeed, it does not

vanish when the particles are infinitely far apart; it represents the work required

to assemble a single lump of charge at infinite – the self energy of a single charge.

We write

Eself =
1

2

N∑
i=1

∫
d3rd3r′

ρi(r− ri)ρi(r
′ − ri)

|r− r′|
. (44)

Notice that this expression is actually independent of the ri, as we would expect.

It is just some finite contribution to the energy of the field and, since the energy
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is ambiguous up to a constant. we can simply neglect to worry about it in our

computations.

Then we assign the energy stored in an electric field as the work done to

assemble the charges at their final positions plus the work required to assemble

the charges. This gives us the strangely simple result

U =

∫
d3r

E2

8π
. (45)

When we work with continuous distributions of charge, this result will always

be finite anyway. When we are working with Dirac delta functions (which are

approximations to whatever a charge actually is), we must be careful not to

compute the charge self-energy.

7 Dielectrics

A great deal of electrostatics is really about trying to understand electric fields in

matter (or some other complex configuration). To proceed, we need to develop

a model of matter and how it responds to electric fields.

7.1 Polarization

If we assume that an electric field induces small dipole moments, we can describe

the dipole moment per volume, the polarization P, with a vector field. The

polarization is a function of the electric field, and in particular, we know that

P(E = 0) = 0. If E is small enough, we can Taylor expand P,

P =

3∑
j=1

χijEj +O(E2). (46)

The χij is the dielectric susceptibility and it depends on the material. For

many materials, χij = χδij .

The polarization itself affects the electric field. To understand how, we

need to think about the electric field induced by a single dipole at a position r0.

Consider a dipole expansion about the point r0. A pure dipole is a configuration

of charge that has only terms with ` = 1 and no other. On a homework, you

proved that two opposite charges, ±q, separated by a become a pure dipole in

the limit that q → 0 while qa remains constant. Therefore, a pure dipole has

φ =
r− r0

|r− r0|3
· p, (47)
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where p is the dipole moment. For a polarization, the dipole moment per unit

area is P(r0)d3r0. Therefore,

φ =

∫
d3r0P(r0) · r− r0

|r− r0|3

= −
∫
d3r0P(r0) · ∇0

1

|r− r0|

=

∫
d3r0 [∇0 ·P(r0)]

1

|r− r0|
. (48)

This is the potential for the electric field in a charge distribution ∇ ·P, so

∇ ·E = 4π∇ ·P(r). (49)

If there are additional charges in the system, we have ∇ ·E = 4πσ + 4π∇ ·P.

Now we can combine this with P = χ̂E, where ε̂ is the dielectric tensor, to

obtain

∇ ·
[(

1̂− 4πχ̂
)
E
]

= 4πσ. (50)

We usually call
(
1̂− 4πχ̂

)
E = D. Finally, we call ε̂ = 1̂ − 4πχ̂ the dielectric

tensor.

7.2 Boundary conditions

In a dielectric material, we find that −ε̂∇φ = D. At a boundary between two

regions with different dielectric constants, ε1 and ε2, we can develop boundary

conditions by noting that ∇ × E = 0 but ∇ ·D = 4πρ. The curl equation for

E tells us that t ·E is continuous across a boundary by the same arguments we

used for charged surfaces. On the other hand, the divergence theorem says that

n ·D|+ − n ·D|− = 4πσ, where σ is a surface charge density at the boundary

between the two dielectric materials.

In terms of the electric potential, we therefore have that φ is continuous

across a surface and

−nT (ε̂)∇φ|+− = 4πσ. (51)

If a material is isotropic, ε̂ is diagonal and, therefore, this simplifies to

εn · ∇φ|+− = −4πσ (52)
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7.3 A dielectric sphere

A dielectric sphere of radius R with an isotropic dielectric constant, ε̂ = ε1̂ is

placed in an external electric field E = Eẑ. We will proceed to find the electric

potential everywhere. Taking advantage of azimuthal symmetry and keeping

track of only the ` = 1 terms, we have

φ =

{
a1r cos θ r < R

b1
r2 cos θ + Er cos θ r > R

(53)

The boundary conditions are

a1R− b1/R2 + ER = 0

−2b1R
−3 − E + εa1 = 0.

Therefore, a1R
3+ER3 = b1 and εa1−E−2R−3(a1R

3+ER3) = (ε−2)a1−3E =

0. Therefore,

φ =


3E
ε−2r cos θ r < R

ER3

r2

(
ε+1
ε−2

)
cos θ + Er cos θ r > R

(54)

7.4 Method of images

The method of images also works for dielectric materials. Consider an isotropic

dielectric ε in the half space z < 0. We are going to find the Green function

associated with a charge in the space z > 0. Taking advantage of translational

symmetry, we can place the charge at a position (x, y, z) = (0, 0, a > 0). Then

G(r, r′) =

{
1

|r−aẑ| + q
|r−bẑ| , z > 0

q′

|r−cẑ| , z < 0.
(55)

Now we need to choose b, c, q and q′ to match the appropriate boundary con-

ditions. These are

1√
r2 + a2

+
q√

r2 + b2
=

q′√
r2 + c2

(56)

a

(r2 + a2)3/2
+

qb

(r2 + b2)3/2
=

εq′c

(r2 + c2)3/2
. (57)

These must be true for any r. Therefore, the denominators should all be equal

in magnitude. Therefore, a = −b = c. Therefore,

1 + q = q′ (58)

a− qa = εq′a (59)
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or 1− q = εq′ and 1 + q = q′. Therefore, q′ = 2/(1 + ε) and q = (1− ε)/(1 + ε).

Therefore,

G(r, r′) =

{
1

|r−aẑ| + 1−ε
1+ε

1
|r+aẑ| , z > 0

2
1+ε

1
|r−aẑ| , z < 0.

(60)

A similar calculation can find G(r, r′) when r′ is in the dielectric.

7.5 Energy inside a dielectric

The energy of a dielectric must account for both the presence of a charge and

the energy required to assemble the dipoles due to the polarization P. Suppose

we know the electric potential φ. Then adding a charge gives δρ gives

δU =

∫
d3r φ(r)δρ(r) =

1

4π

∫
d3r φ∇ · δD =

1

4π

∫
d3r E · δD. (61)

Using E = D/ε, we can integrate both sides. This gives

U =
1

8π

∫
d3r E ·D. (62)

8 Capacitance

Consider two conducting surfaces of equal magnitude but opposite sign total

charge Q. The electric potential difference between the two surfaces, V , must be

linearly related to Q. Therefore, we write Q = CV , and call C the capacitance.

9 Other coordinate systems

We’ve taken for granted that we can write the Laplacian in cartesian, cylindrical

and spherical coordinates. There are many other coordinate systems possible

from which we can solve for Green functions. To establish these, we need to think

about coordinate systems more generally. Consider a set of cartesian coordinates

r. A set of new coordinates ~ξ can be defined by an invertible function, ~ξ(r). We

can define a set of basis vectors from this map by ∂i~ξ which give us lengths in the

~ξ space in terms of lengths in cartesian coordinates, d~ξ = (dr · ∇)~ξ. Similarly,

the inverse map r(~ξ) implies dr = (d~ξ · ∇ξ)r.

We’ll specialize to orthogonal coordinates, where ∂ξir are mutually orthog-

onal. Define

∂ξir = `iêi, (63)
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where êi is a unit vector.

The dot product must also be modified. Note that, if v =
∑
i vi∂ξir, then

v ·w =
∑
ij

viwj∂ξir · ∂ξjr. (64)

For orthogonal coordinates,

v ·w =
∑
i

viwi`
2
i . (65)

9.1 The volume integral

We can use this map between coordinate systems to define an infinitesimal

volume element. The triple product between three vectors, a · (b× c) gives the

volume of a parallel-piped spanned by the three vectors a, b and c. The volume

element is, therefore,

dV = d3ξ ∂1r · (∂2r× ∂3r) . (66)

For orthogonal coordinates,

dV = d3ξ`1`2`3. (67)

9.2 Gradient, divergence, and Laplacian

To compute the gradient of the function in the new coordinate system, we’ll con-

sider a path through space from a point ~ξstart to ~ξend with two fixed coordinates.

The fundamental theorem of vector calculus says∫
dl · ∇φ = φ(~ξend)− φ(~ξstart). (68)

Let’s say the path lies along the ξi direction. Then we can rewrite the above

equation to ∫
dξi`iêi · ∇φ =

∫ ξi,end

ξi,start

dξi
∂φ

∂ξi
, (69)

where the right integral is taken at fixed ξj 6=i. Since this doesn’t depend on

where the path is and how long it is, the integrands must themselves be equal.

Consequently, we find that

∇φ =

3∑
i=1

1

`i

∂φ

∂ξi
êi. (70)

16



To find the divergence, we can take advantage of∫
dV ∇ · v =

∮
da · v. (71)

In particular, choose a domain which is rectangular in the coordinates ~ξ spanning

from a corner (ξ̄1, ξ̄2, ξ̄3) to antipodal corner (ξ̄′1, ξ̄
′
2, ξ̄
′
3). Note that dV = `1`2`3.

On the other hand,

da = dξ2dξ3`2`3ê1

∣∣∣(ξ̄′1,ξ̄2,ξ̄3)

(ξ̄1,ξ̄2,ξ̄3)
+ dξ3dξ1`3`1ê2

∣∣∣(ξ̄1,ξ̄′2,ξ̄3)

(ξ̄1,ξ̄2,ξ̄3)
+ dξ1dξ2`1`2ê3

∣∣∣(ξ̄1,ξ̄2,ξ̄′3)

(ξ̄1,ξ̄2,ξ̄3)
.

(72)

That is, the area integral decomposes into the individual areas of cube faces.

Then we use the fundamental theorem of calculus to write∫ ∫ ∫
d3ξ `1`2`3 (∇ · v) =

∑
i

∫
d3ξ

∂

∂ξi

(
`1`2`3
`i

vi

)
. (73)

If we take the size of the rectangular region to zero, we see that the integrands

are in fact equal. Therefore,

∇ · v =
1

`1`2`3

∑
i

∂

∂ξi

(
`1`2`3
`i

vi

)
. (74)

Finally, this result gives us

∇2φ =
1

`1`2`3

∑
i

∂

∂ξi

(
`1`2`3
`2i

∂φ

∂ξi

)
. (75)

Example: spherical coordinates

As an example, first consider spherical coordinates. We have

r(r, θ, ϕ) = r sin θ cosϕx̂ + r sin θ sinϕŷ + r cos θẑ. (76)

From this we compute `r = 1, `θ = r and `ϕ = r sin θ. Therefore, we have

dV = drdθdϕ r2 sin θ (77)

∇2φ =
1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin θ

∂2φ

∂ϕ2
. (78)

Example: oblate spheroidal coordinates

The coordinate system (ξ, η, ϕ) with 0 ≤ ξ < ∞, −π/2 < η ≤ π/2 and

0 ≤ ϕ < 2π defined by

r = a cosh ξ cos η cosϕx̂ + a cosh ξ cos η sinϕŷ + a sinh ξ sin ηẑ. (79)
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Then

`ξ = `η = a

√
sinh2 ξ + sin2 η (80)

`ϕ = a cosh ξ cos η.

The Laplace’s equation is then

0 =
∂

∂ξ

[
cosh ξ cos η

∂φ

∂ξ

]
+
∂

∂η

[
cosh ξ cos η

∂φ

∂η

]
(81)

+
∂

∂ϕ

[
(sinh2 ξ + sin2 η)

∂φ

∂ϕ

]
.

Consider the case of a conducting disk of radius 1 held at potential V . We’ll

look for a solution φ(ξ) since curves of constant ξ become a disk as ξ → 0. The

solution of Laplace’s equation is then

cosh ξ
∂φ

∂ξ
= C (82)

which implies

φ = C0 + 2C tan−1

[
tanh

(
ξ

2

)]
. (83)

When ξ →∞, φ→ C0 +C π
2 . Since this should be zero, we have C = −2C0/π.

Finally, φ→ C0 = V as ξ → 0. Therefore,

φ = V − 4V

π
tan−1

[
tanh

(
ξ

2

)]
. (84)

9.3 The curl

Finally, for the curl we use ∫
da · ∇ × v =

∮
dl · v. (85)

Start with a square in ~ξ coordinates normal to ξ3. Then∫
dξ1dξ2 `1`2[∇× v]3 =

∫
dξ1dξ2

∂

∂ξ1
(`2v2)−

∫
dξ1dξ2

∂

∂ξ2
(`1v1). (86)

After some computation, we obtain

∇× v =
1

`1`2`3
det


`1ê1 `2ê2 `3ê3

∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

`1v1 `2v2 `3v3

 (87)
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9.4 Inversion through a sphere and the Kelvin transform

Consider the coordinate transformation

r(R) = a2 R

|R|2
. (88)

This mapping is called inversion because points inside a sphere of radius a get

mapped to the region outside (the origin goes to infinity) while points outside

get mapped to the inside of the sphere. The sphere of radius a reflected through

the origin.

Consider a plane tangent to the sphere of radius a, described by R = aX̂ +

Y Ŷ + ZẐ. This gets mapped to

r = a2 aX̂ + Y Ŷ + ZẐ

a2 + Y 2 + Z2
. (89)

Note that(
a3

a2 + Y 2 + Z2
− a

2

)2

+

(
a2Y

a2 + Y 2 + Z2

)2

+

(
a2Z

a2 + Y 2 + Z2

)2

= a2/4. (90)

The plane, therefore, gets mapped to a sphere of radius a/2 at position a/2X̂.

Notice also that this transformation is its own inverse. Therefore, the transfor-

mation also takes spheres in contact with the sphere of radius a to planes.

Then the basis vectors are

∂r

∂X
= a2

[
x̂

|R|2
−R

2X

|R|4

]
(91)

∂r

∂Y
= a2

[
ŷ

|R|2
−R

2Y

|R|4

]
(92)

∂r

∂Z
= a2

[
ẑ

|R|2
−R

2Z

|R|4

]
. (93)

These vectors are all mutually orthogonal. In addition,(
∂r

∂X

)2

=
a4

|R|4
(94)(

∂r

∂Y

)2

=
a4

|R|4
(95)(

∂r

∂Z

)2

=
a4

|R|4
. (96)

So `1 = `2 = `3 = a2/|R|2. Therefore,

∇2φ =
|R|6

a6

∑
i

∂

∂Ri

(
a2

|R|2
∂φ

∂Ri

)
(97)
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Finally, let φ = φ̃|R|. Then

∑
i

∂

∂Ri

[
|R|−2 ∂φ

∂Ri

]
=

∑
i

∂

∂Ri

[
|R|−1 ∂φ̃

∂Ri
+Ri|R|−3φ̃

]
.

=
1

|R|
∑
i

∂2φ̃

∂R2
i

. (98)

Therefore, we have the result that – at least with the origin |R| = 0 excluded

(why?) –

∇2φ =
|R|5

a4

∑
i

∂2φ̃

∂R2
i

. (99)

This defines the Kelvin transform:

φ̃(R) =
1

|R|
φ

(
a2

|R|2
R

)
. (100)

If φ̃ solves Laplace’s equation then so does φ(R). This is the three-dimensional

analogue of the two-dimensional conformal transformation.

As an example, consider the problem of a charge q placed at a point (x, y, z) =

(0, 0, a) above a conducting plane held at zero potential. The solution is

φ(r) =
q√

x2 + y2 + (z − a)2
− q√

x2 + y2 + (z + a)2
. (101)

After a Kelvin transformation,

φ(r) =
q

|~ξ|

 1√
a2 − 2a3ξ3/|~ξ|2 + a4/|~ξ|2

− 1√
a2 + 2a3ξ3/|~ξ|2 + a4/|~ξ|2


=

q

a

 1√
|~ξ|2 − 2aξ3 + a2

− 1√
|~ξ|2 + 2aξ3 + a2

 . (102)
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