
Physics 605: Hilbert Spaces

Due: never

So what is wrong with an infinite-dimensional vector space? Well, nothing.

But suppose we have an infinite number of basis elements, {|1〉 , · · · }. Then any

vector is |v〉 =
∑∞
i=1 ci |i〉 and, suddenly, we find ourselves dealing with infinite

sequences. Therefore, it is important for us to worry about when sequences

converge and when they don’t. Since this is a first-year graduate course, we are

not going to do a lot of worrying about this, but it is worth doing it a little in

order to understand what is at stake.

1 Convergence of sequences

Convergence is one of those things physicists want to ignore because it’s hard

and complicated. Unfortunately, convergence is also important – it is the source

of many errors in physics.

First, what do we mean by a sequence converging? Suppose we have a num-

ber xn – it converges to x if the following this is true: for every ε > 0, there is

an N such that |xn− x| < ε for any n > N . This gives us an intuitive notion of

what it means for xn to get closer and closer to x. Similarly, in a vector space

we can use a norm to define convergence: for every ε > 0, there is an N such

that ‖vn − v‖ < ε for any n > N .

Definition: A Cauchy sequence is one in which, for some ε, there is an N

such that, if n > N and an m > N , ‖vn − vm‖ < ε. This just means elements

in the sequence get closer and closer together.

Any convergent sequence is a Cauchy sequence; in order to get closer and

closer to x, a sequence also has to get closer and closer to itself. So here is a

question: is any Cauchy sequence also convergent? The answer, it turns out, is

not necessarily, as can be seen by these two examples:

Counter-example: Here is an example based on an ancient Babylonian method

to compute the square root of 2 using rational numbers. The vector space in

question is the vector space of rational numbers (and the scalars are rational

numbers).

Consider the sequence of rational numbers xn+1 = (xn + 2/xn)/2 with x0 =
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1. How do we figure out what it converges to? We look for fixed points: set

xn+1 = xn = xf and ask if there is a value such that the series does not grow

or shrink. Algebra tells us that x2f = 2 (or that xf = ±∞). Now the question

is to determine if this is a stable or unstable fixed point – does the sequence

approach
√

2 or run away from it? The easiest way to do this is to consider

xn =
√

2 + δn for some small δ. Then we have

√
2 + δn+1 ≈

√
2 +

δ2

2
√

2
+O(δ3). (1)

If δn < 0 then it’s magnitude decreases. If δn > 0, then its magnitude increases.

We conclude that if 0 < x0 < xf then this sequence increases toward
√

2.

Now we know that the sequence gets closer and closer to
√

2. In fact, this

sequence is Cauchy because the xn must be getting closer to each other as they

approach
√

2 and every element of xn is rational. Yet it does not converge to a

rational number!

Example: The real numbers are complete. In fact, one way to get the real

numbers is to start with the rational numbers and add all the limits of every

Cauchy sequence.

Definition: If all Cauchy sequences converge in a vector space, the space is

called complete (or Banach if you want to be fancy about it). A complete

space with an inner product is called a Hilbert space.

Interestingly, we can away take a Hilbert space and “complete” it. That

is, given an infinite dimensional vector space, V , with inner product, we can

form a Hilbert space, H, whose elements are the Cauchy sequences of V . The

hard part is to prove that one can write an inner product for H using the inner

product in V .

2 Dual spaces of Hilbert spaces

We learned that the dual space of an infinite dimensional vector space can be

larger than the original vector space. What if our vector space is a Hilbert space?

Definition: The dual space, H∗, of an infinite-dimensional Hilbert space, H, is

the vector space of continuous linear functionals on H. Linear functionals are

continuous if and only if they are bounded, i.e. |L |v〉 | ≤ M‖ |v〉 ‖ for some
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real number M > 0.

Definition: A separable Hilbert space is one in which every vector can be

written as the limit of a Cauchy sequence. Interestingly, a Hilbert space is sep-

arable if and only if it has a countable number of basis vectors.

Riesz representation theorem: Let L |v〉 be a bounded linear functional (so

it returns a scalar) and |v〉 be a vector in a separable Hilbert space. Then there

is a |w〉 such that L |v〉 = 〈w|v〉.

This tells us that almost everything we know is true about finite-dimensional

vector spaces carries over to the case of separable Hilbert spaces. In particular,

in finite-dimensional vector space, the dual space and vector space are isometric.

Apparently, this is also true for Hilbert spaces.

Riesz-Fischer theorem: This theorem, proven in 1907, states that Hilbert

space of functions, f , such that ‖f‖ is finite, are also complete. They are not

necessarily separable though.

3 Bases

Consider the Hilbert space of periodic functions f(θ). The set of functions

|n〉 = fn(θ) = einθ (2)

are an orthonormal set of functions with 〈f |g〉 =
∫ 2π

0
dθ f∗(θ)g(θ)/(2π). These

functions form a basis of the Hilbert space, meaning that

|v〉 =
∑
n

cn |n〉 =
∑
n

|n〉 〈n|v〉 (3)

Notice how we can regroup this expression, |v〉 = (
∑
n |n〉 〈n|) |v〉. We can

think of

1 =
∑
n

|n〉 〈n| (4)

as a linear operator (equal to the identity). Let’s rewrite this as functions:

v(θ) =
∑
n

einθ
∫ 2π

0

dθ′

2π
e−inθ

′
v(θ′). (5)

This is really just the statement that Fourier series are invertible.
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4 Dirac delta function

4.1 Basic definitions

Let’s consider the space of periodic functions and the linear functional L0 |f〉 =

f(0). Is this linear functional in our new notion of a dual space? The answer

is no – it isn’t bounded because we can make f(0) as large as we want while

keeping ‖f‖ finite. Hence, there can’t be an M such that |L0 |f〉 | ≤ M‖f‖.
This is consistent with our notion that the Dirac delta function cannot really

exist.

One approach to thinking about the delta function is to lift the restriction

on bounded functionals. To do that, we want to also have a different notion of

convergence.

Definition: Choose a suitable set of well-behaved, smooth (infinitely differen-

tiable) functions, which we will call test functions. We say that |vn〉 con-

verges weakly to |v〉 if limn→∞ 〈vn|f〉 = 〈v|f〉 for every test function, f .

Similarly, |vn〉 converges weakly to L0 if limn→∞ 〈vn|f〉 = L0 |f〉.

Consider, for example, the sequence of functions

vn(x) =
1√

2π/n
exp

(
−n2x

2

2

)
(6)

This sequence is not Cauchy, and shouldn’t be part of a Hilbert space by all

rights. Indeed, we have that limn→∞ 〈vn|f〉 = limn→∞
∫∞
−∞ dxv∗n(x)f(x) = f(0)

which converges weakly but is not a bounded, linear functional.

Similar to how we handled completeness, one can create a new Hilbert space,

sometimes called a rigged Hilbert space whose elements are the weakly-

convergent series. This new, enlarged Hilbert space has a bunch of new elements

in it, called generalized functions or distributions. One of these is the Dirac

delta, δ(x). We might then say that limn→∞ vn(x) ∼ δ(x).

Sometimes people do the following calculation:∫ Q

−Q
dq eiqx =

2

x
sin(Qx). (7)

They know (we will prove this soon) that
∫∞
∞ dqeiqx = δ(x) but they also see

that, if they fix x, then sin(Qx)/x oscillates around zero without ever approach-

ing it as Q→∞.
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4.2 Other objects

What objects are in our rigged Hilbert space depends on what test functions we

chose. Suppose our test functions are smooth. Then we can also make sense of

distributions like ∂nδ(x)/dxn using integration-by-parts,∫
dx

∂nδ(x)

∂xn
f(x) = (−1)n

∫
dx δ(x)

∂nf

∂xn
= (−1)n

∂nf

∂xn

∣∣∣∣
x=0

. (8)

If our test functions could only be differentiated N times, then we could only

define N derivatives of δ but not N + 1.

4.3 Completeness relations

Consider

|v〉 =
∑
n

|n〉 〈n|v〉 (9)

For periodic functions, the basis set is eimθ and Eq. (9) is equivalent to

v(θ) =
∑
n

einθ
∫ 2π

0

dθ′

2π
e−inθ

′
v(θ′)

=

∫ 2π

0

dθ′

2π

∑
n

ein(θ−θ
′)v(θ′). (10)

Now we can ask the question, does
∑
n e

in(θ−θ′) converge? If it did, we would

have f(θ − θ′) ≡
∑
n e

in(θ−θ′) so that

v(θ) =

∫ 2π

0

dθ′

2π
f(θ − θ′)v(θ′), (11)

which implies that f(θ) = 2πδ(θ).

Of course, we switched the order of two limits here – the limit in the sum

over n and the limit defining the integral. However, that is a bit of an illusion.

We allow ourselves to switch the order symbolically but recall that the sequence

itself is the element of the space. It’s a bit of a mathematical technicality but

it gets the job done; and that job is to allow you to pretend the manipulations

you learned as undergraduates ok. Finally, we write

∞∑
n=−∞

einθ = 2πδ(θ) (12)

converges weakly. Notice that this requires that θ lie between 0 and 2π to make

sense.
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4.4 Changes of variables

Suppose one has a function f(x) with N isolated zeros, xn, such that f ′(xn) 6= 0.

Then

δ[f(x)] =

N∑
n=1

δ(x− xn)

|f ′(xn)|
. (13)

As a consequence, consider the change of variables x = r sin θ cosϕ, y = r sin θ sinϕ,

and z = r cos θ from spherical to cartesian coordinates. We have

δ(x− x′)δ(y − y′)δ(z − z′) =
1

(r′)2 sin θ′
δ(r − r′)δ(θ − θ′)δ(ϕ− ϕ′). (14)
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