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Maxwell’s equations are

∇ ·E = 4πρ ∇ ·B = 0

∇×E = − 1
c
∂B
∂t ∇×B = 4π

c J + 1
c
∂E
∂t

(1)

in cgs units. We also have the Lorenz force law,

F = qE + q
v

c
×B, (2)

for a charge q moving with velocity v in an electric and magnetic field.

In the limit of electrostatics and magnetostatics, we assume that ρ, E and

B do not change with time. In that case, we obtain

∇ ·E = 4πρ ∇ ·B = 0

∇×E = 0 ∇×B = 4π
c J

(3)

Note that, because ∇ · ∇ × B = 0, we also require ∇ · J = 0. What does

this mean about the electric currents? First, it means that ∂ρ/∂t = 0 (by the

continuity equation) – charges may be moving but there can be no accumulation

or depletion of charge. One crucial consequence is that currents with ∇ · J = 0

must be closed loops.

The Helmholtz theorem applies here by telling us that B = ∇ × A where

∇ ·A = 0. With this constraint, we have

∇2A = −4π

c
J (4)

1 Biot-Savart Law

From Eq. (4), we obtain

A(r) =
1

c

∫
d3r′

J(r′)

|r− r′|
. (5)

Taking the curl of both sides gives us our first important result: the Biot-

Savart law. Indeed,

B = ∇×A =
1

c

∫
d3r′ J(r′)×∇ 1

|r− r′|

=
1

c

∫
d3r′ J(r′)× r− r′

|r− r′|3
. (6)
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In some sense, we are done - we can obtain the magnetic field from any distri-

bution of currents. Of course, evaluating this integral is not always trivial.

The difficult part of using Eq. (6), aside from actually doing the integral, is

thinking about what the current distribution is for a particular system.

2 Multipole Expansion

We’ll start our analysis of magnetostatics with the multipole expansion associ-

ated with Eq. (4). Therefore, we use the Helmholtz solution

A(r) =
1

c

∫
d3r′

J(r′)

|r− r′|
(7)

=
1

c

∞∑
`=0

∑̀
m=−`

2`+ 1

4π

1

r`+1
Y`m(θ, ϕ)

∫
d3r′ J(r′)(r′)`Y ∗`m(θ′, ϕ′). (8)

2.1 Monopole Term

The first term in the expansion is the monopole term,

A(0)(r) =
4π

c|r|

∫
d3r′J(r′). (9)

This turns out to be zero, but it takes some work to prove it. To do so,

consider
3∑
j=1

∇′j · [r′Jj(r′)] = J(r′) + r′∇′ · J(r′) = J(r′). (10)

Therefore, we have an expression for the ith component of A which is

Ai,(0)(r) =
4π

c|r|

∫
d3r′∇′ · [r′iJ(r′)] . (11)

By the divergence theorem, this evaluates to a surface integral at infinity, which

vanishes under the assumption that J→ 0 sufficiently fast. Therefore

Ai,(0)(r) = 0. (12)

2.2 Dipole Term

The ith component of the dipole term is

Ai,(1) =
4π

c|r|3
r ·
∫
d3r′ r′Ji(r

′). (13)

Lemma: If we define mij =
∫
d3r′ r′jJi(r

′) then mij = −mji.
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To prove, consider∑
k

∂′k
(
r′ir
′
jJk
)

= r′jJi + r′iJj (14)

since
∑
k ∂
′
kJk = 0. Integrating both sides and using the fact that the

left-hand-side is a total divergence immediately gives us the result.

Lemma: The most general antisymmetric 3× 3 matrix mij can be written as

mij =
∑
k εijkMk, where εijk is the Levi-Civita antisymmetric tensor.

We will prove this directly by showing that Mk = (1/2)
∑
ij εijkmij .

To do that, notice that∑
k

εabkMk =
1

2

∑
kij

εabkεijkmij =
1

2

∑
ij

(δaiδbj − δajδbi)mij ,

using a standard identity
∑
k εabkεijk = δaiδbj − δajδbi. Then we

have ∑
k

εabkMk =
1

2
(mab −mba) = mab.

The most general antisymmetric object can be written in terms of the com-

pletely antisymmetric tensor εijk as mij =
∑
k εijkM

k for some vector with

components Mk. Then

Ai,(1) =
1

c|r|3
∑
j

rjεjikM
k =

1

c|r|3
M× r. (15)

We call M the magnetic dipole moment of the current distribution.

in terms of the current, we then see that

Mk =
1

2

∑
ij

εijkmij =
1

2

∑
ij

εijk

∫
d3r′ r′iJj(r

′) (16)

so

M =
1

2

∫
d3r′ r′ × J(r′). (17)

3 Boundary conditions

Suppose there is a sheet of current. If this sheet lies along the xy−plane, for

example, the current density could be

J = δ(z)K, (18)
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where K is the surface current density. Notice that the units of J are

charge/second/area; this implies the units of K are charge/second/length. In-

tegrating the equation for magnetic field around a loop containing the surface

immediately allows us to derive the following boundary conditions,.

B+ −B− =
4π

c
K×N, (19)

where N is the unit normal of the surface (pointing toward the + side). The

normal component of B, on the other hand, is continuous because ∇ ·B = 0.

4 Magnetic Scalar Potential

Consider Maxwell’s equations for B in a region without current. Then we have

∇ ·B = 0 and ∇×B = 0. In that case, we see immediately that B = −∇φM
for some scalar (and that ∇2φM = 0). The scalar φM is called the magnetic

scalar potential, and despite the really pointed similarities to the electric

scalar potential, it is quite a different object.

For one thing, we know that B = −∇φ but that, at a current carrying

surface,

B+ −B− = K× n. (20)

This implies, in particular, that

−∇φM
∣∣
+

+∇φM
∣∣
− = K× n. (21)

This means that the normal component of ∇φM is continuous across a surface of

current. So is the component of ∇φM directed along K on the surface. However,

let t be a unit vector tangent to the surface but normal to K. Therefore,

−t · ∇φM
∣∣
+

+ t · ∇φM
∣∣
− = t ·K× n (22)

If φM itself were continuous, then Eq. (20) could not be true – indeed, the two

tangent components of ∇φ would have to be continuous as well in that case.

4.1 Multiple-valuedness of φM

Let’s consider a straight wire carrying a current. Ampere’s law tells us that∮
L

dl ·B = 4πI/c, (23)
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where I is the current enclosed by the loop L. However, since the J = 0

everywhere outside the wire, we also have∮
L

dl · ∇φM = −4πI/c. (24)

How can this be? There is only one way: φM cannot be both singly-valued and

continuous everywhere along the path. This makes it somewhat nontrivial to

use as a mathematical tool but, nevertheless, still useful.

So what does φM look like for a straight wire? Taking advantage of the

rotational symmetry about the wire and the translational symmetry along the

wire, we assume B = B(r)θ̂ and so

2πr
∂φM
∂θ

= −4πI/c. (25)

Hence,

φM = −2I(θ − θ0)/c. (26)

We explicitly see that a singly-valued φm jumps from −2I(2π− θ0)/c to 2Iθ0/c

at θ = 0. We can eliminate this discontinuity if we allow φM to be multiply-

valued.

4.2 Example

To see this in action, let’s work out an example. Consider a charged sphere of

radius R, with surface charge density σ rotating with angular velocity ω. We

can immediately write down K to be

K = σRω sin θφ̂. (27)

Then

−∇φM
∣∣
+

+∇φM
∣∣
− = σωR sin θθ̂. (28)

Meanwhile, we can also write

φM =

{ ∑
` a`r

`P`(cos θ), r < R∑
` b`r

−`−1P`(cos θ), r > R
, (29)

where we’ve taken advantage of azimuthal symmetry to simplify the expansion.

Therefore, we require∑
`

a``R
`−1P`(cos θ) +

∑
`

b`(`+ 1)R−`−2P`(cos θ) = 0 (30)∑
`

[
a`R

` sin θ − b`R−`−1 sin θ
]
P ′`(cos θ) = σωR sin θ.
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The first equation tells us that b` = `R2`+1a`/(`+ 1). The second equation can

be rewritten as

∂

∂θ

[∑
`

[
a`R

` − b`R−`−1
]
P`(cos θ) + σωR cos θ

]
= 0. (31)

Therefore, we may suppose that∑
`

[
a`R

` − b`R−`−1
]
P`(cos θ) + σωR cos θ = C0. (32)

Then we have

C0δ`,0l = a`R
` − b`R−`−1 + σωRδ`,1 (33)

= a`R
` 1

`+ 1
+ σωRδ`,1.

Therefore,

a` = −2σωδ`,1 + C0 (34)

b` = −σωδ`,1. (35)

Therefore,

φM =

{
C0 − 2σωr cos θ, r < R

−σω 1
r2 cos θ, r > R.

(36)

5 Magnetic Materials

We start with the notion of the magnetization, M, the magnetic dipole moment

per unit volume in a material. We start by expanding M in powers of B,

assuming that it depends only locally on the magnetic field. This gives us

M = M0 + χB, (37)

where χ is the magnetic susceptibility tensor. Here we are explicitly including

the possibility that a material has a permanent magnetic dipole. In general,

most materials do not and so we will assume M0 = 0 in most of the following

development.

The vector potential can be written using

A =

∫
d3r′

M(r′)× (r− r′)

c|r− r′|
=

∫
d3r′ M(r′)×∇ 1

c|r− r′|

= −
∫
d3r′∇′ ×

[
M(r′)

c|r− r′|

]
+

∫
d3r′
∇′ ×M(r′)

c|r− r′|
. (38)
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The first term is a total derivative, but it’s not obvious how to express it that

way as it is written. Let’s write it the value of the ith components explicitly

using indices. This is

−
∫
d3r′∇′ ×

[
M(r′)

c|r− r′|

]
i

= −
∑
jk

∫
d3r′ ∂′j

[
εijkMk(r′)

1

c|r− r′|

]

=

∫
d3r′

∑
j

∂′j

[∑
k

εjikMk(r′)
1

c|r− r′|

]
(39)

=
∑
jk

∮
dajεjikMk(r′)

1

c|r− r′|

= −
∑
jk

∮
dajεijkMk(r′)

1

c|r− r′|
(40)

By the standard assumptions, this integral vanishes. Therefore,

−∇2A = ∇×B =
4π

c
J +

4π

c
∇×M (41)

This can then be rewritten by introducing H = B− (4π/c)M so that

∇×H =
4π

c
J. (42)

Notice that ∇ ·H = −4π∇ ·M/c 6= 0.

For historical reasons, we will actually write M = χmH so that, if we define

µ = (1 + 4πχ/c), then B = µH. The tensor µ is the magnetic permeability of

the material. We will almost always assume, as is typical, that µ is proportional

to the identity.

5.1 Torque on a magnetic moment

As one possible, entirely classical model of how the magnetization may arise,

let’s consider a material made up of many small loops of current. Think, for

example, of the electrons whizzing around the nucleus of an atom if you must.

Let’s write the current of one such loop as

I = I (− sin θx̂ + cos θŷ) , (43)

where θ is the cylindrical coordinate azimuthal angle. The magnetic moment of

this current loop is

m =
1

c

∫
dθR r× I =

πR2I

c
ẑ. (44)
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We can compute the total force on this current loop and the total torque using

a differential version of the Lorentz force law. In particular, the force per unit

length on the loop is

f =
1

c
I×B. (45)

Therefore,

F =
I

c

∫ 2π

0

dθR (− sin θByẑ + sin θBzŷ (46)

− cos θBxẑ + cos θBzx̂) = 0.

T =
IR2

c

∫ 2π

0

dθ
(
−Byx̂ cos2 θ +Bxŷ sin2 θ

)
+ · · ·

= |m| (−Byx̂ +Bxŷ)

= m×B, (47)

where the · · · are terms that will eventually integrate to zero.

The equilibrium position occurs when m ∝ B. Indeed, the only stable

equilibrium occurs when m and B point in the same direction. Consequently, we

can write a formula for the equilibrium magnetic dipole moment, m(B) = mB.

A material made up of these dipole moments will then have

M = MB. (48)

Writing H = (1 + 4πM/c)B we can then rewrite the formula for the magneti-

zation as

M(H) =
M

1 + 4πM/c
H. (49)

Don’t assume, however, that χ = M/(1 + 4πM/c) > 0 is always true. More

generally, one requires quantum mechanics and statistical mechanics to do this

calculation more rigorously. It turns out that we can have either χ > 0 or

χ < 0. The former case is called a diamagnet, the latter a paramagnet.

Moreover, the interaction between neighboring magnetic moments can facilitate

a “permanent” magnetic dipole (think of iron, for example).

6 The Gauss Integral

Let’s think about Ampere’s law for a loop of current, L1,

4πIN/c =

∮
L2

dl2 ·B. (50)
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The loop L2 must wind around the current loop L1 obviously, and does so N

times. Now substitute in the Biot-Savart law,

4πIN/c =
I

c

∮
L2

∮
L1

dl2 ·
(
dl1 ×

r− r′

|r1 − r2|3

)
. (51)

Canceling out the I/c and rearranging a little gives us a result first noted

by Gauss,

N =
1

4π

∮
L1

∮
L2

dl1 × dl2 ·
r− r′

|r− r′|3
. (52)

Apparently, given two loops that wind around each other N times, this integral

is always equal to precisely N . This is known as an index theorem – an integral

of a continuous function that, somehow, depends only on an integer that is

determined only by the topology of some geometrical object.
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