
Physics 605: Special Functions as solutions to differential equations

Updated: September 28, 2017

Here we are going to work out the eigenfunctions of the Laplacian in 2 and

3 dimensions in a few different domains. What kind of boundary conditions

should we impose? Let’s consider an inner product,

〈f |g〉 =

∫
D

dDrf∗(r)g(r), (1)

over some domain D in D dimensions. Under what conditions is the Laplacian

self-adjoint?

Let’s just compute it directly:

〈f |∇2g〉 =

∫
D

dDrf∗(r)∇2g(r)

=

∫
∂D

dD−1a · ∇g(r) f∗(r)−
∫
D
dDr∇f∗ · ∇g (2)

=

∫
∂D

dD−1a · ∇g(r) f∗(r)−
∫
∂D

dD−1a · ∇f∗(r) g(r) + 〈∇2f |g〉 .

Eq. (2) implies that the eigenvalues of ∇2 are negative in any dimension. This

calculation shows that either

N̂ · ∇φ = 0 or φ = 0 (3)

on the boundary, where N̂ is the outward pointing unit normal to the region D.

1 2D Rectangular Domain

Let’s first find the eigenfunctions in a rectangular domain with periodic bound-

ary conditions φ(x, L) = φ(x, 0) and φ(L, y) = φ(0, y). Then(
∂2

∂x2
+

∂2

∂y2

)
φ = −k2φ. (4)

The orthonormal eigenfunctions are

|n,m〉 =
1

L
ei2πnx/Lei2πmy/L =

1

L
eiknm·r, (5)

where knm ≡ 2πnx/Lx̂ + 2πmy/Lŷ.
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Notice that the functions |n,m〉 are actually simultaneous eigenfunctions of

the Laplacian and ∂2x (and ∂2y). This is reasonable because, in fact,[
∇2, ∂2x

]
≡ ∇2∂2x − ∂2x∇2 = 0[

∇2, ∂2y
]

= 0[
∂2x, ∂

2
y

]
= 0.

Thus, these operators are all simultaneously diagonalizable.

1.1 Completeness relations

The eigenfunctions of ∇2 form a basis for the Hilbert space of functions that

vanish on the rectangular domain with periodic boundary conditions. This

allows us to compute a number of identities associated with the completeness

of this basis. For instance,

|v〉 =
∑
nm

|n,m〉 〈n,m|v〉

=
∑
n,m

1

L2
eiknm·r

∫
d2r′ e−iknm·r′v(r′). (6)

Now let’s allow functions which converge only weakly (see the notes on Hilbert

spaces for more information about this). Then we can expand our Hilbert space

to include objects like the Dirac delta. In such a space, we can perform the

following manipulation,

|v〉 =
1

L2

∫
d2r′

[∑
nm

eiknm·(r−r′)

]
v(r′). (7)

Thus, we conclude that∑
nm

eiknm·(r−r′) = L2δ2(r− r′) = L2δ(x− x′)δ(y − y′) (8)

This complements the orthonormality relation,

δnn′δmm′ =
1

L2

∫
d2r ei(knm−kn′m′ )·r (9)

2 2D Disk

Consider the two-dimensional circular domain, r < R, and the Hilbert space

of smooth functions that vanish on r = R. The eigenvalue problem for the
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Laplacian in polar coordinates is

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
= −k2φ. (10)

We seek to find simultaneous eigenfunctions of ∇2 and ∂2θ . To do so, we notice

that [∇2, ∂2θ ] indeed commute.

We first expand in the θ coordinate by writing

φ(r, θ) =

∞∑
m=−∞

cm(r)eimθ. (11)

Therefore we find

1

r

∂

∂r

(
r
∂cm
∂r

)
− m2

r2
cm + k2cm = 0. (12)

This is a Sturm-Liousville problem with W (r) = r. This is called Bessel’s

equation. What do its solutions look like? We know that there will be two

solutions since it is a second-order equation. Let’s call them Jm and Ym. Indeed,

φ =

∞∑
m=−∞

[
c̃mJm(kr) + d̃mYm(kr)

]
eimθ. (13)

These solutions are called Bessel functions. Ultimately, our job is to discover

the properties of these functions. Once we know the properties, we can use

those properties to manipulate them the same way we manipulate sin and cos.

2.1 Bessel’s equation

Traditionally, Bessel’s equation is generalized somewhat,

1

r

∂

∂r

(
r
∂f

∂r

)
− ν2

r2
f + k2f = 0, (14)

where ν is allowed to be any real number.

2.2 Large r

When r is large, the equation is approximately

∂2

∂r2
f + k2f ≈ 0. (15)

The solutions are therefore f ≈ A sin(kr) + B cos(kr) when r → ∞. These

functions are oscillatory for large r and, therefore, have an infinite number of

zeros.
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2.3 Series expansion

One way to attempt a solution is as a series expansion in r. Technically, this is

called the Frobenius method. Write

cm(r) = rα
∞∑
n=0

anr
n (16)

and substitute it into the equation.

Then

0 = a0
(
α2 −m2

)
rα−2a1[(α+ 1)2 −m2]rα−1 (17)

+

∞∑
n=2

[
an(α+ n)2 − anm2 + k2an−2

]
rα+n−2.

The solution arises by setting the coefficients of the powers of r to zero.

Now we have some choices to make. Clearly either a0 or a1 must be nonzero.

Suppose a0 6= 0. Then α = ±m and a1 = 0.

2.3.1 Bessel functions of the first kind

If we choose α = m, which is consistent with a smooth function through the

disk, we obtain the recursion relation,

an =
−k2

(α+ n)2 −m2
an−2 =

k2an−2
n(n+ 2m)

, (18)

setting the other coefficients. Let’s call the resulting function Jm(kr). It is clear

that these solutions to Bessel’s equation do not have any singularities in them.

A more useful formula for Jm comes from a generating function. Indeed,

one can show that

GJ(x, z) = exp

[
x

2

(
z − 1

z

)]
=

∞∑
m=−∞

Jm(x)zm. (19)

This is useful because we can use GJ(x, z) to prove statements about all the

Bessel functions Jm, in one fell swoop. We can show from direct substitution

that
1

r
∂r (r∂rGJ(kr, z)) + k2GJ(kr, z) =

1

r2
z∂z (z∂zGJ(kr, z)) . (20)

Now we expand GJ(x, z) in powers of z using the general expansion of Eq. (19).

Notice that

z∂z (z∂zGJ) =

∞∑
m=−∞

m2Jm(x)zm. (21)
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Therefore, {
1

r
∂r [r∂rJm(kr)] +

(
k2 − m2

r2

)
Jm(kr)

}
zm = 0. (22)

Setting like powers of zm equal implies that the coefficients of GJ corresponding

to different powers of m do, indeed, solve Bessel’s equation.

An example of something we can now prove is that Jm(0) = δm0. Simply

consider the expansion of GJ(0, z) in powers of z, which yields GJ(0, z) = 1.

Since this is also equal to GJ(0, z) =
∑∞
m=−∞ Jm(0)zm, we conclude that only

J0(0) can be nonzero (and is, in fact, 1). A less trivial result can be derived

from
∂

∂x
GJ(x, z) =

1

2

(
z − 1

z

)
GJ(x, z). (23)

Putting both terms on one side and expanding both sides in powers of z, we

obtain
∞∑

m=−∞
zm
{
J ′m(x)− 1

2
[Jm−1(x)− Jm+1]

}
= 0. (24)

Hence 2J ′m(x) = Jm−1(x) + Jm+1(x).

2.3.2 Bessel functions of the second kind

When α = −m, we have functions with singularities as r → 0. We can call

these function J−m. Sadly, it ends up being proportional to Jm when m is an

integer. We can see this directly from the generating function GJ(x, z). Notice

that GJ(−x, 1/z) = GJ(x, z). Expanding both sides of this equation in powers

of z yields
∞∑

m=−∞
[J−m(−x)− Jm(x)] zm = 0 (25)

which must vanish term by term. Consequently, J−m(x) = Jm(−x). It turns

out that this is a consequence of m being an integer. If we look at solutions

of the generalized Bessel equation with non-integer m, we instead obtain that

Jν(x) and J−ν(x) are, indeed, linearly independent. So what do we do when ν

is an integer? Instead, we define

Yν(kr) =
Jν(kr) cos(νπ)− J−ν(kr)

sin(νπ)
(26)

and Ym(kr) becomes Yν as ν → m. Notice that Yν inherits the divergences of

J−ν . In addition, Y0 turns out to diverge logarithmically (whereas J−ν does

not).

5



2.4 Applying the boundary conditions

Now we know that Ym diverges as r → 0 so that d̃m = 0. Let κmn be the nth

zero of Jm. Then the remaining boundary condition at r = R tells us that

|n,m〉 = Jm(κmnr/R)eimθ (27)

is the most general eigenfunction of the Laplacian in the disk r < R that vanishes

on the boundary. Any function satisfying those boundary conditions can now

be written as a linear combination,

f(r, θ) =

∞∑
n=1

∞∑
m=−∞

cmnJm(κmnr/R)eimθ (28)

The orthogonality relation for Jm(kr) is∫ R

0

dr r Jm(κmnr/R)Jm(κn′m′r/R) =
1

2
δnn′

∫ R

0

drrJ2
m(κnmr/R). (29)

It turns out that you can evaluate the integral on the right hand side in terms

of Bessel functions. Indeed, one can show that∫ R

0

dr rJ2
m(κnmr/R) = −R

2

2
Jm−1(κnm)Jm+1(κnm)

= −R
2

2
J2
m−1(κnm) (30)

2.5 Completeness relations

Now we obtain the completeness relationship,

2

∞∑
n=1

∞∑
m=−∞

Jm(κmnr/R)Jm(κmnr
′/R)

R2J2
m−1(κnm)

=
1

r
δ(r − r′). (31)

2.6 Integral form

To find an integral form for solutions, we start with the solution in cartesian

coordinates. These are

eik·r. (32)

We wish to expand these in the orthonormal eimθ/
√

2π – the bases vectors for

the azimuthal part of the solution. To do this, note that

eik·r =
∑
m

eimθ
∫

dθ

2π
ei|k|r cos(θ−θ0)−imθ, (33)
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which is just a consequence that eimθ form an orthonormal basis using the cor-

rect inner product. This equation just expresses eik·r in terms of this basis. Of

course, since these are periodic in θ, the value of θ0 does not matter. Conse-

quently,

eik·r =
∑
m

eimθ
∫

dθ

2π
eikr cos θ−imθ, (34)

where k = |k|.
Since the left-hand side of Eq. (34) is an eigenfunction of ∇2 then the right-

hand side also is. Therefore, the terms on the right-hand side must be linear

combinations of Jm and Ym. If we take r → 0, we see that these functions are

all non-singular. Therefore, it must be true that

Jm(kr) =

∫ 2π

0

dθ

2π
eikr cos θ−imθ. (35)

Strictly speaking, we only know these are proportional but can match the ex-

pansion of Jm(kr) in powers of r with our previous expansion to prove this

equation is actually an equality.

3 Laplacian on a sphere

This material briefly discusses the context of Chapter 12 of Arfken

and Weber.

In spherical coordinates,

∇2φ =
1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

sin2 θ

∂2φ

∂ϕ2

]
. (36)

The portion independent of r is

−L2 =
1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

sin2 θ

∂2φ

∂ϕ2
, (37)

is the Laplacian on the surface of a sphere, parametrized by (θ, ϕ). The strange

minus sign in Eq. (37) is there so that the eigenvalues of L2 end up being

positive. Here, we are going to find the eigenfunctions and eigenvalues of L2.

3.1 The long way around

The eigenvector equation takes the form

1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

sin2 θ

∂2φ

∂ϕ2
= −λφ. (38)
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Next we write φ =
∑
m cme

imϕ so that

1

sin θ

∂

∂θ

(
sin θ

∂cm
∂θ

)
− m2

sin2 θ
cm = −λcm. (39)

If x = cos θ then ∂/∂θ = (∂x/∂θ)∂/∂x = − sin θ∂/∂x. Therefore,

∂

∂x

[(
1− x2

) ∂cm
∂x

]
− m2

1− x2
cm = −λcm. (40)

Notice that something funny happens at the poles of the sphere, when θ = 0 or

π. However, the cm(θ) must not be singular at the poles. It turns out that this

requires λ = `(`+ 1) for integers ` ≥ 0. This is, by no means, obvious – it takes

quite a bit of work to show. The solutions to L2Ylm = `(` + 1)Ylm are called

spherical harmonics. We will see why this is true in the next section.

Let’s see if we can solve for for m = 0. Then we have

∂

∂x

[(
1− x2

) ∂c0
∂x

]
= −λc0. (41)

The solutions to this equation are

P`(x) =
1

2` `!

d`

dx`
[
(x2 − 1)`

]
(42)

with eigenvalues λ = `(`+1). The P`(x) are the Legendre polynomials. We can

compute the first few as

P0(x) = 1

P1(x) =
1

2

d

dx

(
x2 − 1

)
= x

P2(x) =
1

4× 2

d2

dx2
(
x4 − 2x2 + 1

)
=

3x2 − 1

2
,

and so on. These are defined so that P`(1) = 1.

How else can we see this? We note that this is a Sturm-Liousville problem

with W = sin θ. The inner product is

〈f |g〉 =

∫ π

−π
dθ sin θf(θ)g(θ) =

∫ 1

−1
dx f(x)g(x). (43)

If we try to solve our equation with polynomials in x, we notice that those

polynomials must be orthogonal to each other. We’ve already seen a bunch

of polynomials orthogonal with this inner product – the Legendre polynomials.

And indeed, Eq. (42) give a formula for the Legendre polynomials.
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3.2 Angular momentum

The operator L2 also describes the angular momentum in quantum mechanics.

Let’s use this to our advantage by decomposing it into its three components,

Lx, Ly and Lz. Indeed, L = −ir × ∇ gives us precisely a first-order operator

whose square is L2. Let’s compute it explicitly in cartesian coordinates to make

sure. We will use components and the Levi-Cevita tensor εijk (which is 1 for

ε123 and completely antisymmetric otherwise). Then we have

L2 = −
∑
ijkab

εijkrj∂k (εiabra∂b)

−
∑
ijkab

εijkεiabrj∂k (ra∂b) (44)

Now we note that
∑
i εijkεiab = δjaδkb − δjbδka and so

L2 = −
∑
jkab

(δjaδkb − δjbδka) rj∂k (ra∂b) (45)

We can also show that Lz = −i∂/∂φ.

The operators satisfy the following commutation relations,

[Lx, Ly] = iLz (46)[
L2, LI

]
= 0, I = x, y, or z (47)

Since they commute, we know that we can simultaneously diagonalize L2 and

Lz. That is what we will do. Let |Y 〉 be a simultaneous eigenvector of both L2

and Lz.

Let’s also define L± = Lx ± iLy. Then

[Lz, L±] = ±L± (48)

[L+, L−] = 2Lz. (49)

Suppose that Lz |Y 〉 = m |Y 〉 (since it is an eigenvector). Then, since L2 =

L2
x + L2

y + L2
z, we know that the eigenvalues of L2 are strictly larger than m2.

Furthermore, LzL+ |m〉 = L+Lz |m〉+ [Lz, L+] |m〉 = (m+ 1) |m〉. So

L+ |m〉 ∝ |m+ 1〉 (50)

L− |m〉 ∝ |m− 1〉 (51)

Thus, we call L± the ladder operators.
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Now what happens if we take (L+)k |m〉 ∝ |m+ k〉. But m cannot grow

without bound so there must be some k such that Lk+ |m〉 = 0. Let k be the

smallest integer such that this is true. Then, L−L+ = (Lx − iLy)(Lx + iLy) =

L2
x +L2

y + i[Lx, Ly] = L2−L2
z −Lz. In that case, L2 = L−L+ +L2

z +Lz. Then

L−(L+)k |m〉 = 0 = [L2− (m+k)2− (m+k)]Lk−1+ |m〉. Define ` = m+k. Then

L2 = `(`+ 1). We also discover, from this, that |m| ≤ `.
Therefore, L2 |`,m〉 = `(` + 1) |`,m〉 and the eigenfunctions are indexed by

|`,m〉 where |m| ≤ `. The orthonormalized eigenfunctions will be Y`m(θ, φ).

How do we actually find them? Applying L± to the solutions we found with

m = 0.

3.3 Orthogonality

The most important thing to know about the spherical harmonics is∫
dΩ Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) =

4π

2`+ 1
δmm′δ``′ , (52)

where dΩ = dϕdθ sin θ. Of course, they are orthogonal, as they must be as they

have either a different eigenvalue with L2 or Lz. The factor of 4π/(2` + 1) on

the right-hand side can be taken as the definition of the normalization of the

spherical harmonics.

3.4 Legendre polynomials

The Legendre polynomials arise as spherical harmonics with m = 0. In particu-

lar, P`(cos θ) ∝ Y`0(θ, ϕ). Traditionally, the normalization is set at θ = 0, where

cos θ = 1, by P`(1) = 1. Therefore, we see that P0 = 1, P1 = x, P2 = (3x2−1)/2,

and so on.

4 Constructive Method for Obtaining the Spher-

ical Harmonics

4.1 Circular Harmonics

There is another method to obtain the spherical harmonics that is constructive.

We start with the definition of a homogeneous polynomial.
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Definition: A homogeneous polynomial, p`(x1, x2, · · · , xn) of degree ` sat-

isfies p`(rx1, · · · , rxn) = r`p`(x1, · · · , xn). An example would be, p2(x, y) =

x2 + xy.

Homogenous polynomials of degree ` form a vector space. The harmonic,

homogeneous polynomials of degree n, defined by ∇2p`(x1, · · · ) = 0, also make

up a vector space.

In 2D, for example, we can look at the space of harmonic, homogenous

polynomials p`(x, y). We have

` = 0: The vectors {1} form a basis.

` = 1: The vectors {x, y} form a basis.

` = 2: The vectors {x2, xy, y2} form a basis for the homogeneous polynomials.

However, {x2/2 − y2/2, xy} form a basis for the harmonic, homogeneous

polynomials.

` = 3: The harmonic, homogeneous polynomials are spanned by the basis {x3/3−
xy2, y3/3− yx2}.

Now, consider the fact that ∇2p`(x, y) = 0 in polar coordinates. We write

x = r cos θ and y = r sin θ so that p`(x, y) = r`p`(cos θ, sin θ), which implies

1

r

∂

∂r

(
r
∂r`

∂r

)
p`(cos θ, sin θ) +

r`

r2
∂2p`(cos θ, sin θ)

∂θ2
= 0. (53)

Hence,
∂2p`(cos θ, sin θ)

∂θ2
= −`2p`(cos θ, sin θ). (54)

Hence, the homogeneous, harmonic polynomials can also be used to form the

eigenvectors of part of the Laplacian. Indeed, we notice that

` = 0: {1}

` = 1: {cos θ, sin θ}

` = 2: {cos(2θ), sin(2θ)}

and so on are just the sines and cosines that make up the basis for the space of

periodic functions!
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4.2 Spherical harmonics

Now we think about the harmonic, homogeneous polynomials p`(x, y, z) with

x = r sin θ cosϕ, y = r sin θ sinϕ, and z = r cos θ. We have

0 = ∇2p` =
1

r2

(
r2
∂r`

∂r

)
p` + r`−2L2p`. (55)

Hence, we see that

L2p` = −`(`+ 1)p`. (56)

Let’s look at these polynomials for r = 1. Then

` = 0 : {1}

` = 1 : {x, y, z} = {sin θ cosϕ, sin θ sinϕ, cos θ}

` = 2 : {x2 − y2, x2 − z2, xy, xz, yz} =

{sin2 θ cos(2ϕ), sin2(θ) cos2(ϕ)− cos2(θ), sin2(θ) sin(2ϕ), sin(2θ) cosϕ, sin(2θ) sinϕ}.

Since these functions all have the same eigenvalue, there is no guarantee

that they are orthogonal with any inner product. And indeed, they are not.

However, since L2 and Lz = −i∂/∂ϕ commute, we can use Lz to diagonalize

the functions within each subspace of `. Consequently, we arrive at the spherical

harmonics (or functions proportional to them anyway):

` = 0 : {1}

` = 1 : {sin θeiϕ, sin θe−iϕ, cos θ}

` = 2 : {sin2 θe2iϕ, 3 cos θ − 1, sin2(θ)e−2iϕ, sin(2θ)eiϕ, sin(2θ)e−iϕ}.

Finally, we choose∫
dΩ Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) =

4π

2`+ 1
δmm′δ``′ , (57)

where dΩ = dϕdθ sin θ.

5 Harmonic functions in spherical coordinates

Any solution to Laplace’s equation can be expanded in spherical harmonics. In

other words,

φ =

∞∑
`=0

∑̀
m=−`

R`m(r)Y`m(θ, ϕ). (58)
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When the solution is axisymmetric, then we can alternately expand in P`(cosθ).

Therefore,

∇2φ =
1

r2
∂

∂r

(
r2
∂R`m
∂r

)
− `(`+ 1)

r2
R`m = 0 (59)

and we find that R`m = A`mr
` + B`mr

−(`+1). Similarly, for axisymmetric

solutions,

φ(r, θ) =

∞∑
`=0

(
A`r

` +B`r
−(`+1)

)
P`(cos θ). (60)

These expansions are called the multipole expansion, however the method is

valid for any equation whose solutions can be expanded in Y`m.

These formulas play an important role in solving electrostatics problems,

since spherical geometries are so common.
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