Physics 605: Approximation Methods

Due: never

1 Method of steepest descent

(Arfken \& Weber pg. 489)
Consider the integral for the Gamma function

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} d t t^{z-1} e^{-t} \tag{1}
\end{equation*}
$$

This function has the important property that $\Gamma(z+1)=z \Gamma(z)$ so that, when z is an integer, n, then $\Gamma(n)=(n-1)$!. Notice, however, that $\Gamma(z)$ is defined on the complex plane. For this to make sense, we must interpret $t^{z-1}=e^{(z-1) \ln t}$. Incidentally, Gauss invented something called $\Pi(z)=\int_{0}^{\infty} d t t^{z} e^{-t}$ which is an all-around better function that $\Gamma(z)$. Like Betamax ${ }^{(\mathrm{TM})}$ (Google it!), it failed to catch on even though it was a superior product.

To learn the method of steepest descent, we will consider $\Gamma(n+1)$ for large, real n. Then we have

$$
\begin{equation*}
\Gamma(n+1)=\int_{0}^{\infty} d t t^{n} e^{-t}=\int_{0}^{\infty} d t e^{-t+n \ln t} \tag{2}
\end{equation*}
$$

Let's rescale t in the following way: let $t=n \xi$. Then

$$
\begin{equation*}
\Gamma(n)=n^{n-1} \int_{0}^{\infty} d \xi e^{-n(\xi-\ln \xi)} \tag{3}
\end{equation*}
$$

Our interest is to do this modified integral when we know that n is large. In general, the method of steepest-descent will allow us to handle integrals that can be written as

$$
\begin{equation*}
I=\int_{C} d z f(z) e^{-n g(z)} \tag{4}
\end{equation*}
$$

where $f(z)$ does not depend exponentially on n, which often arise in quantum mechanics and statistical mechanics.

The method of steepest-descent takes advantage of the contour-independence of these integrals. The trick is to deform the contour in such a way as to allow as to make it easy to approximate the integral when n is large.

1.1 Saddle points

A saddle point is defined as a point in which $\left.\partial g(z)\right|_{z=z_{0}}=0$. If $g(z)$ is holomorphic in the vicinity of such a point then we have, necessarily,

$$
\begin{equation*}
g(z) \approx g\left(z_{0}\right)+\frac{1}{2} g^{\prime \prime}\left(z_{0}\right)\left(z-z_{0}\right)^{2}+\cdots \tag{5}
\end{equation*}
$$

where we assume that $g^{\prime \prime}\left(z_{0}\right)$ is small. In fact, the Morse lemma ensures that every function $g(z)$ is infinitesimally close to one in which $g^{\prime \prime}\left(z_{0}\right)$ is nonzero so this is not too large of a constraint.

Since this is a complex function, asking whether the saddle-point at z_{0} is a maximum or minimum doesn't quite make sense. We can ask, however, what $g(z)$ looks like near its saddle-point in terms of $z=x+i y$. Let $\delta z=\delta x+i \delta y=$ $z-z_{0}$. Then we have

$$
\begin{align*}
& \operatorname{Re} g(z) \approx \operatorname{Re} g\left(z_{0}\right)+\frac{1}{2} \operatorname{Re} g^{\prime \prime}\left(z_{0}\right)\left(\delta x^{2}-\delta y^{2}\right)-\operatorname{Im} g^{\prime \prime}\left(z_{0}\right) \delta x \delta y \tag{6}\\
& \operatorname{Im} g(z) \approx \operatorname{Im} g\left(z_{0}\right)+\frac{1}{2} \operatorname{Im} g^{\prime \prime}\left(z_{0}\right)\left(\delta x^{2}-\delta y^{2}\right)+\operatorname{Re} g^{\prime \prime}\left(z_{0}\right) \delta x \delta y \tag{7}
\end{align*}
$$

Near a saddle-point, part of the integrand looks like

$$
\begin{align*}
e^{-n g(z)} \approx & e^{-n g\left(z_{0}\right)} e^{-n \operatorname{Re} g^{\prime \prime}\left(z_{0}\right)\left(\delta x^{2}-\delta y^{2}\right) / 2+n \operatorname{Im} g^{\prime \prime}\left(z_{0}\right) \delta x \delta y} \tag{8}\\
& \times e^{-n i \operatorname{Im} g^{\prime \prime}\left(z_{0}\right)\left(\delta x^{2}-\delta y^{2}\right)-n i \operatorname{Re} g^{\prime \prime}\left(z_{0}\right) \delta x \delta y} .
\end{align*}
$$

The good news is that, not only can we deform a contour to pass through a saddle-point, we can also choose which direction it travels in as it passes. Indeed, suppose we choose our contour to pass through z_{0} and to do so in such a way that the imaginary component of $g^{\prime \prime}\left(z_{0}\right)\left(z-z_{0}\right)^{2}-g\left(z_{0}\right)$ vanishes. Then

$$
\begin{equation*}
\frac{1}{2} \operatorname{Im} g^{\prime \prime}\left(z_{0}\right)\left(\delta x^{2}-\delta y^{2}\right)+\operatorname{Re} g^{\prime \prime}\left(z_{0}\right) \delta x \delta y=0 \tag{9}
\end{equation*}
$$

Let $\delta x=t \cos \theta$ and $\delta y=t \sin \theta$. Then this equation becomes

$$
\begin{equation*}
\operatorname{Im} g^{\prime \prime}\left(z_{0}\right) \cos (2 \theta)+\operatorname{Re} g^{\prime \prime}\left(z_{0}\right) \sin (2 \theta)=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
-\operatorname{Im} g^{\prime \prime}\left(z_{0}\right) / \operatorname{Re} g^{\prime \prime}\left(z_{0}\right)=\tan (2 \theta) \tag{11}
\end{equation*}
$$

Substituting everything back into the integrand, in the vicinity of the saddlepoint we have

$$
\begin{equation*}
e^{-n g(z)} \approx e^{-n g\left(z_{0}\right)} \exp \left\{-\frac{n}{2} t^{2}\left[\operatorname{Re} g^{\prime \prime}\left(z_{0}\right) \cos (2 \theta)-\operatorname{Im} g^{\prime \prime}\left(z_{0}\right) \sin (2 \theta)\right]\right\}(1 \tag{12}
\end{equation*}
$$

With our choice of θ, the argument of the exponential decreases rapidly as t increases. The vicinity of the saddle-point itself seems to dominate the integrand. Indeed,

$$
\begin{equation*}
e^{-n g(z)} \approx e^{-n g\left(z_{0}\right)} \exp \left\{-\frac{n}{2} t^{2}\left|g^{\prime \prime}\left(z_{0}\right)\right|\right\} \tag{13}
\end{equation*}
$$

1.2 Approximating integrals near saddle-points

As n becomes larger and larger, the saddle-points of $g(z)$ end up dominating the entire integral. We write

$$
\begin{align*}
I & =\int_{C} d z f(z) e^{-n g(z)} \\
& \approx e^{i \theta} \int d t f\left(z_{0}\right) e^{-n g\left(z_{0}\right)} \exp \left[-\frac{n}{2} t^{2}\left|g^{\prime \prime}\left(z_{0}\right)\right|\right] \tag{14}
\end{align*}
$$

For large n, we may as well take the limits of the integral from $-\infty$ to ∞ since the integral is dominated by the saddle point anyway. Then we have

$$
\begin{equation*}
I \approx e^{i \theta} f\left(z_{0}\right) e^{-n g\left(z_{0}\right)} \sqrt{\frac{2 \pi}{n\left|g^{\prime \prime}\left(z_{0}\right)\right|}} \tag{15}
\end{equation*}
$$

If $g(z)$ has more than one saddle-point, then the integral is a sum over the contributions of each of the individual saddle-points.

2 Stirling's Approximation

Now let's go back to our problem of approximating $\Gamma(n+1)$ for large n. We have

$$
\begin{equation*}
n!=\Gamma(n+1)=n^{n+1} \int_{0}^{\infty} d \xi e^{-n(\xi-\ln \xi)} \tag{16}
\end{equation*}
$$

Let $g(z)=z-\ln z$. Then $g^{\prime}(z)=1-1 / z$ so $g^{\prime}\left(z_{0}\right)=0$ is solved by $z_{0}=1$. Then we have $g(1)=1$ and $g^{\prime \prime}(1)=1$. From our analysis, it seems clear that $\theta=0$ (the contour deforms to be parallel to the real axis) and so,

$$
\begin{equation*}
n!=\Gamma(n+1) \approx n^{n} e^{-n} \sqrt{2 \pi n} \tag{17}
\end{equation*}
$$

This is called Stirling's approximation for the factorial.

