
Physics 605: Approximation Methods

Due: never

1 Method of steepest descent

(Arfken & Weber pg. 489)

Consider the integral for the Gamma function

Γ(z) =

∫ ∞
0

dttz−1e−t. (1)

This function has the important property that Γ(z + 1) = zΓ(z) so that, when

z is an integer, n, then Γ(n) = (n−1)!. Notice, however, that Γ(z) is defined on

the complex plane. For this to make sense, we must interpret tz−1 = e(z−1) ln t.

Incidentally, Gauss invented something called Π(z) =
∫∞
0
dttze−t which is an

all-around better function that Γ(z). Like Betamax(TM) (Google it!), it failed

to catch on even though it was a superior product.

To learn the method of steepest descent, we will consider Γ(n+ 1) for large,

real n. Then we have

Γ(n+ 1) =

∫ ∞
0

dt tne−t =

∫ ∞
0

dt e−t+n ln t. (2)

Let’s rescale t in the following way: let t = nξ. Then

Γ(n) = nn−1
∫ ∞
0

dξ e−n(ξ−ln ξ). (3)

Our interest is to do this modified integral when we know that n is large. In

general, the method of steepest-descent will allow us to handle integrals that

can be written as

I =

∫
C

dzf(z)e−ng(z), (4)

where f(z) does not depend exponentially on n, which often arise in quantum

mechanics and statistical mechanics.

The method of steepest-descent takes advantage of the contour-independence

of these integrals. The trick is to deform the contour in such a way as to allow

as to make it easy to approximate the integral when n is large.
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1.1 Saddle points

A saddle point is defined as a point in which ∂g(z)|z=z0 = 0. If g(z) is holomor-

phic in the vicinity of such a point then we have, necessarily,

g(z) ≈ g(z0) +
1

2
g′′(z0)(z − z0)2 + · · · , (5)

where we assume that g′′(z0) is small. In fact, the Morse lemma ensures that

every function g(z) is infinitesimally close to one in which g′′(z0) is nonzero so

this is not too large of a constraint.

Since this is a complex function, asking whether the saddle-point at z0 is a

maximum or minimum doesn’t quite make sense. We can ask, however, what

g(z) looks like near its saddle-point in terms of z = x+ iy. Let δz = δx+ iδy =

z − z0. Then we have

Re g(z) ≈ Re g(z0) +
1

2
Re g′′(z0)(δx2 − δy2)− Im g′′(z0)δxδy (6)

Im g(z) ≈ Im g(z0) +
1

2
Im g′′(z0)(δx2 − δy2) + Re g′′(z0)δxδy. (7)

Near a saddle-point, part of the integrand looks like

e−ng(z) ≈ e−ng(z0)e−nReg′′(z0) (δx2−δy2)/2+nImg′′(z0) δxδy (8)

×e−niImg
′′(z0) (δx2−δy2)−niReg′′(z0) δxδy.

The good news is that, not only can we deform a contour to pass through

a saddle-point, we can also choose which direction it travels in as it passes.

Indeed, suppose we choose our contour to pass through z0 and to do so in such

a way that the imaginary component of g′′(z0)(z − z0)2 − g(z0) vanishes. Then

1

2
Im g′′(z0)(δx2 − δy2) + Re g′′(z0)δxδy = 0 (9)

Let δx = t cos θ and δy = t sin θ. Then this equation becomes

Im g′′(z0) cos(2θ) + Re g′′(z0) sin(2θ) = 0, (10)

or

−Im g′′(z0)/Re g′′(z0) = tan(2θ). (11)

Substituting everything back into the integrand, in the vicinity of the saddle-

point we have

e−ng(z) ≈ e−ng(z0) exp
{
−n

2
t2 [Reg′′(z0) cos(2θ)− Img′′(z0) sin(2θ)]

}
.(12)

2



With our choice of θ, the argument of the exponential decreases rapidly as t in-

creases. The vicinity of the saddle-point itself seems to dominate the integrand.

Indeed,

e−ng(z) ≈ e−ng(z0) exp
{
−n

2
t2|g′′(z0)|

}
. (13)

1.2 Approximating integrals near saddle-points

As n becomes larger and larger, the saddle-points of g(z) end up dominating

the entire integral. We write

I =

∫
C

dzf(z)e−ng(z)

≈ eiθ
∫
dt f(z0)e−ng(z0) exp

[
−n

2
t2|g′′(z0)|

]
. (14)

For large n, we may as well take the limits of the integral from −∞ to ∞ since

the integral is dominated by the saddle point anyway. Then we have

I ≈ eiθf(z0)e−ng(z0)

√
2π

n|g′′(z0)|
. (15)

If g(z) has more than one saddle-point, then the integral is a sum over the

contributions of each of the individual saddle-points.

2 Stirling’s Approximation

Now let’s go back to our problem of approximating Γ(n + 1) for large n. We

have

n! = Γ(n+ 1) = nn+1

∫ ∞
0

dξe−n(ξ−ln ξ). (16)

Let g(z) = z − ln z. Then g′(z) = 1 − 1/z so g′(z0) = 0 is solved by z0 = 1.

Then we have g(1) = 1 and g′′(1) = 1. From our analysis, it seems clear that

θ = 0 (the contour deforms to be parallel to the real axis) and so,

n! = Γ(n+ 1) ≈ nne−n
√

2πn. (17)

This is called Stirling’s approximation for the factorial.
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