Physics 605: Approximation Methods

Due: never

1 Method of steepest descent

(Arfken & Weber pg. 489)

Consider the integral for the Gamma function

I'(z) = /OOO dtt*te " (1)

This function has the important property that I'(z + 1) = 2I'(z) so that, when
z is an integer, n, then I'(n) = (n—1)!. Notice, however, that I'(z) is defined on
the complex plane. For this to make sense, we must interpret t*—1 = e(z=1)Int,
Incidentally, Gauss invented something called II(z) = [ dtt*e~" which is an
all-around better function that T'(z). Like Betamax(™) (Google it!), it failed
to catch on even though it was a superior product.

To learn the method of steepest descent, we will consider T'(n + 1) for large,

real n. Then we have

F(n—l—l)z/ dt t”e_t:/ dt e~ttnint, (2)
0 0

Let’s rescale t in the following way: let ¢t = n£. Then

I'(n)=n"""! /000 d¢ e ™MEINE) (3)

Our interest is to do this modified integral when we know that n is large. In
general, the method of steepest-descent will allow us to handle integrals that

can be written as
1= [ dzpe ), (4)
c

where f(z) does not depend exponentially on n, which often arise in quantum
mechanics and statistical mechanics.

The method of steepest-descent takes advantage of the contour-independence
of these integrals. The trick is to deform the contour in such a way as to allow

as to make it easy to approximate the integral when n is large.



1.1 Saddle points
A saddle point is defined as a point in which d¢(z)|.=., = 0. If g(z) is holomor-
phic in the vicinity of such a point then we have, necessarily,

9(2)  glz0) + 59" (20) (2 = 20) 4+ o)

where we assume that ¢”(zo) is small. In fact, the Morse lemma ensures that
every function g(z) is infinitesimally close to one in which ¢”(zp) is nonzero so
this is not too large of a constraint.

Since this is a complex function, asking whether the saddle-point at zg is a
maximum or minimum doesn’t quite make sense. We can ask, however, what
9(z) looks like near its saddle-point in terms of z = x 4 iy. Let 0z = dx +idy =

z — zg. Then we have
Reg(z) ~ Reg(zo) + 5Reg”(:0)(0a> ~ 6%) ~Tm g (20)608y  (6)
Im g(z) =~ Im g(z)+ %Im g (20)(6x% — 6y*) + Re ¢”(20)0x0y.  (7)
Near a saddle-point, part of the integrand looks like
e~m9(2) o g—ng(20) g—nReg”(20) (622 —by®)/2+nlmg" (20) dxdy (8)

Xe—nilmg”(z(]) (622 —6y?)—niReg’ (z0) dxdy

The good news is that, not only can we deform a contour to pass through
a saddle-point, we can also choose which direction it travels in as it passes.
Indeed, suppose we choose our contour to pass through zy and to do so in such

a way that the imaginary component of g”(2)(z — 20)? — g(20) vanishes. Then

1
5 Im 9" (20) (0% = 6y*) + Re g"(20)d20y = 0 9)

Let dx = tcos@ and dy = tsinf. Then this equation becomes
Im g”(29) cos(20) + Re g”(z0) sin(26) = 0, (10)

—Im ¢"(20)/Re g"(20) = tan(26). (11)

Substituting everything back into the integrand, in the vicinity of the saddle-

point we have

e 9~ emm9(0) exp {—th [Reg”(z0) cos(20) — Img"”(z0) sin(29)]}(12)



With our choice of 8, the argument of the exponential decreases rapidly as ¢ in-

creases. The vicinity of the saddle-point itself seems to dominate the integrand.
Indeed,

e 90 n e m9(20) exp {—gt2|9”(30)|} : (13)

1.2 Approximating integrals near saddle-points

As n becomes larger and larger, the saddle-points of g(z) end up dominating

the entire integral. We write

I

/ dzf(z)e_”g(z)
c

ew/dt f(z0)e™90) exp [—gt2|g”(zo)|}. (14)

Q

For large n, we may as well take the limits of the integral from —oo to oo since

the integral is dominated by the saddle point anyway. Then we have

2

T ~e?f(z efng(Zo) =
fz0) MPTEN]

(15)
If g(z) has more than one saddle-point, then the integral is a sum over the

contributions of each of the individual saddle-points.

2 Stirling’s Approximation

Now let’s go back to our problem of approximating I'(n + 1) for large n. We
have

nl=T(n+1) =n""" dee~m(E7E), (16)
0

Let g(z) = 2z —Inz. Then ¢'(z) =1 —1/z so ¢'(20) = 0 is solved by 2o = 1.
Then we have g(1) = 1 and ¢”’(1) = 1. From our analysis, it seems clear that

6 = 0 (the contour deforms to be parallel to the real axis) and so,
n!=T(n+1) = n"e "V2mn. (17)

This is called Stirling’s approximation for the factorial.



