
Physics 605: Complex Variables

Due: never

The complex numbers can be thought of - formally - as a space of numbers

made of ordered pairs (x, y) such that

1. (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

2. (x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

These two operations both commute and are associative. Indeed, the complex

numbers are an example of a mathematical structure called a field.

The space of complex numbers is probably one of the most remarkable things

in math. First, it contains the real numbers inside it: the subspace of numbers

(x1, 0) behave precisely like the real numbers. There is a number, i = (0, 1)

such that i2 = (−1, 0) = −1. This gives us an alternate notation to use for any

complex number, z = x + iy, which recognizes the fact that (1, 0) and (0, 1)

form a basis for the vector space of ordered pairs.

There is also a particularly nice linear map from the complex plane to

itself called complex conjugation – z∗ = x − iy. This is geometrically a

mirror reflection through the real axis, so it leaves the real axis unharmed.

Interestingly, z∗z is a real number. We define |z| =
√
z∗z as the magnitude of

the complex number z.

The complex numbers arose in mathematics because any nth degree poly-

nomial p(z) = 0 has precisely n complex roots. There is another representation

of the complex numbers that indicate that, even without the polynomials, we’d

end up thinking about them anyway. Consider the space spanned by the two

matrices

1 =

(

1 0

0 1

)

, i =

(

0 1

−1 0

)

. (1)

This space is isomorphic to the complex numbers, where matrix multiplication

plays the role of complex multiplication.

1 Functions of a complex variable

Any complex function of two real variables, f(x, y), can be re-expressed as a

function of z = x + iy. By convention, we write f(z, z∗) to retain the sense
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that these are functions of two arguments rather than one. Moreover, we can

construct any function of x and y with combinations of z and z∗. Then we can

write
∂

∂z
=

1

2

[

∂

∂x
− i

∂

∂y

]

(2)

and
∂

∂z∗
=

1

2

[

∂

∂x
+ i

∂

∂y

]

(3)

In complex analysis, we specialize to the case of functions of the form f(z).

That is, functions with the property ∂f/∂z∗ = 0. If we think of f = u + iv,

then we can decompress this equation to

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (4)

These equations are called the Cauchy-Riemann equations. Any differentiable

function satisfying these equations is called holomorphic.

The Cauchy-Riemann conditions are highly restrictive. Notice that,

∂2u

∂x2
=

∂2v

∂x∂y
(5)

−∂2u

∂y2
=

∂2v

∂x∂y
. (6)

Therefore,
(

∂2

∂x2
+

∂2

∂y2

)

u = 0. (7)

So the function u is harmonic. A similar calculation shows that v is also a har-

monic function. The two functions u and v are known as conjugate-harmonic.

We can get a more geometrical handle on what these equations mean if we

think about the function f(z) as a vector function. Define f = (u,−v). Then

∇ · f = ∂u

∂x
− ∂v

∂y
, (8)

But the right-hand side precisely vanishes by the Cauchy-Riemann equations.

Hence f is a divergence free vector field. Going further, compute the 2D curl of

f ,

∇× f = ǫij∂ifj = −∂v

∂x
− ∂u

∂y
= 0. (9)

So holomorphic functions are vector fields that are entirely divergence-free and

curl-free in two dimensions.
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1.1 A few words about the two-dimensional curl

Notice that the curl in 2D is a scalar. This means that it can also be rewritten

as a divergence of a different vector field. To wit, rewrite the curl as ǫij∂ifj =

∂i (ǫijfj). If we define Fi = ǫijfj = (−v,−u), we see that ∇× f = ∇ ·F. What

is F? It is just f rotated by ninety degrees at each point.

While these relations are entirely unrelated to f corresponding to a holo-

morphic function, I find it satisfying that F is the vector field representation of

if(z) = −v+ iu. Since f is divergence- and curl-free for holomorphic functions,

we conclude that F is also divergence- and curl-free.

2 Analytic functions

An analytic function is one that can be expressed as a power series that converges

in some open subset. A necessary condition to have an analytic function is that

it must have an infinite number of derivatives (that is, all analytic functions are

smooth). For real functions,

f(x) =

∞
∑

n=0

cn(x − x0)
n (10)

is analytic if the series converges around the point x0.

As we saw on a homework about bump functions, in real space the con-

verse need not be true: there are plenty of smooth but not analytic functions.

Similarly, we define an analytic, complex function as one that can be written as

f(z) =

∞
∑

n=0

cn(z − z0)
n, (11)

where the series converges in some domain of the complex plane.

One amazing theorem – maybe the most important of complex analysis – is

this: Theorem: (Goursat) Functions that are holomorphic in a domain D are

also analytic in that domain.

One simple consequence of this is that, if you can take one derivative of a

function f(z) and the those derivatives satisfy the Cauchy-Riemann equations,

then you can take an infinite number of them. Strangely, the proof requires us

to understand something how to integrate complex functions.
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3 Properties of holomorphic functions

We know that complex functions can be viewed as a special case of a divergence-

and curl-free vector field. To integrate vector field’s on the plane, we can com-

pute a line integral along a path R(s),

∫

R

dl · f =
∫ b

a

ds
∂R

∂s
· f [R(s)]. (12)

To integrate a function on the complex plane, we need to specify a contour,

z(s), on the complex plane as well. We then define

∫

C

dzf(z) ≡
∫ b

a

ds
∂z(s)

∂s
f [z(s)]. (13)

If we take this seriously, let’s write f = u+ iv and z = x+ iy. Then

∫

C

dzf(z) =

∫ b

a

ds

{

∂x(s)

∂s
u[z(s)]− ∂y(s)

∂s
v[z(s)]

}

(14)

+i

∫ b

a

ds

{

∂x(s)

∂s
v[z(s)] +

∂y(s)

∂s
u[z(s)]

}

.

This seems reminiscent of the formula for the line integral but, also, different.

Still, it is instructive to try to rewrite this as 2D path integrals. To do that,

let’s take ∂sz(s) → ∂sR = (∂sx, ∂sy). Then we see that

∫

C

dzf(z) =

∫ b

a

ds∂sR · f [R(s)] + i

∫ b

a

ds∂sR× f [R(s)]

=

∫ b

a

ds∂sR · f [R(s)] + i

∫ b

a

ds∂sR · F[R(s)] (15)

So the real and imaginary parts are just path integrals of the two vector fields

f and F.

This leads us to the critically important theorem,

Theorem: (Cauchy) Let f(z) be holomorphic in a domain, D, and C be any

closed contour entirely within D surrounding a point w on the complex plane.

Then
∮

C

dz f(z) = 0.

The proof is a consequence of the fact that the line integral around a closed

path of a curl-free vector field is always zero. At this point, it seems as if holo-

morphic functions are boring. The above result can be parlayed into a more
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useful result.

Corollary: Let f(z) be holomorphic in a domain, D, and C be any closed

contour entirely within D surrounding a point w on the complex plane. Then

∮

C

dz
f(z)

z − ω
= 2πif(w).

Instead of a proof, let’s assume the result of the integral is path independent

(as long as the contour contains point w) and consider a particular contour: a

circle of radius r with the point w at its center. Then z(θ) = w + reiθ and we

have
∮

C

dz
f(z)

z − ω
=

∫ 2π

0

dθreiθi
f(w + reiθ)

reiθ

= i

∫ 2π

0

dθf(w + reiθ). (16)

Taking r → 0, we see that this gives 2πif(w).

But why stop there?

Corollary: Let f(z) be holomorphic in a domain, D, and C be any closed

contour entirely within D surrounding a point w on the complex plane. Then

n!

2πi

∮

C

dz
f(z)

(z − ω)n+1
= f (n)(w).

Because of this formula, any holomorphic function has an infinite number of

derivatives; and we can compute them by doing integrals! Indeed,

Theorem: (Goursat) A function holomorphic in a domain D is also analytic in

that domain.

To prove this result, we would simply construct the expansion we want – the

Taylor expansion – and write

f(z) =

∞
∑

n=0

1

n!
f (n)(w)(z − w)n. (17)

Replacing the derivatives with their respective integral formulas, we obtain a

series expansion for any holomorphic function. The crux of the proof of Gour-

sat’s theorem then involves showing that the series expansion thus obtained

converges to the original holomorphic function.
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3.1 Entire Functions

Entire function: An entire function is one for which the Taylor expansion

converges on the entire complex plane.

If a holomorphic function f(z) is not entire, then it has a finite radius of

convergence. That is, its Taylor expansion converges inside an open disk (the

disk without the boundary) of radius R.

Let’s write a Taylor expansion for an arbitrary entire function by expanding

around the origin. Then

f(z) =
∞
∑

n=0

anz
n. (18)

For this to converge everywhere on the entire complex plane (get it? get it?)

we need

lim
n→∞

|an|1/n = 0, (19)

which just means the coefficients do not grow too rapidly.

Entire functions are useful, in particular, because they actually happen. One

important example is the exponential function, ez =
∑∞

n=0 z
n/n!.

Theorem: (Louisville’s theorem) Any bounded, entire function must be con-

stant.

To prove this, write f(z) =
∑∞

n=0 anz
n, where

an =
1

2πi

∮

C

dz
f(z)

zn+1
(20)

and consider a circular contour of radius r containing the origin.

Then we have

|an| =
∣

∣

∣

∣

r−n

2π

∫

dθf(reiθ)e−inθ

∣

∣

∣

∣

≤ r−n

2π

∫

dθ|f(reiθ)|. (21)

Since the function is bounded, we also know that |f(reiθ)| ≤ M for

all z. Therefore, an ≤ Mr−n. Letting r → ∞ shows that an ≤ 0

for all n 6= 0. Since the contour integral can’t depend on the radius

of the contour, it must be that an = 0 for all n 6= 0. Hence, the

function is constant.
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Theorem: (Maximum modulus principle) If f(z) is a holomorphic function

then |f(z)| has no maximum.

Theorem: (Weierstrass Factorization Theorem) Any entire function can be

written as a product of its zeros. In other words, we can always write any entire

function as

f(z) = czm0eg(z)
∏

n,zn 6=0

Epn
(z/zn), (22)

where

Ep(z) =

{

(1 − z), p = 0

(1 − z) exp[
∑p

n=1 z
n/n], p > 0

(23)

pn is a sequence of integers, g(z) is another entire function, f(zn) = 0 and f(z)

has no other zeros. When there is a zero at z = 0, we set m > 0. Remarkably,

this is true for even infinite products. Note that eg(z) has no zeros – that’s why

I wrote it that way.

Not complete: We can use this to develop some nutty infinite products of

entire functions. Let’s take the function sin(πz) as an example. The function

sin(πz) has roots on the real axis at z = n for any integer n. Therefore, we

immediately see that

sin(πz) = eg(z)zm
∏

n6=0

Epn
(z/n). (24)

This leaves us with the task of finding the sequence pn and the entire function

f(z). If we look at the Taylor expansion of sin(πz) near z = 0, we see that

m = 1 and g(z) = lnπ +O(z). Similarly, let’s consider the Taylor expansion of

sin(πz) near the pole at n. This is

sin(πz) ≈ π(z − n)− 1

6
π3(z − n)3 + · · · (25)

Now we can compare this to the expansion of our infinite product. Note that

Epm
(z/m) ≈ en+n2/2+··· when m 6= n. Therefore, we have

eg(z)z
∏

n6=0

Epn
(z/n) ≈ eg(n)(n− z)e

∑pn
m=1

nm/m + · · · (26)

4 Meromorphic Functions

A meromorphic function is holomorphic within a domain D except for at isolated

points. It turns out that any meromorphic function is the ratio of two analytic
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functions. Suppose the meromorphic function f(z) has a pole at a point w.

Then we can write any meromorphic function using a Laurent series,

f(z) =

∞
∑

n=−∞

an(z − w)n (27)

where

an =
1

2πi

∮

dz
f(z)

(z − w)n+1
, (28)

where the integral is taken over a path containingw but no other non-holomorphic

points. If f(z) is meromorphic, then there is an N < 0 such that aN 6= 0. If

this happens, we say that f(z) has a pole at w, and if aN 6= 0 for N < 0 but

an = 0 for n < N then we say w is an N th order pole.

5 More complex contour integrals

Let’s suppose we have a meromorphic function

f(z) =
g(z)

∏M
m=1(z − zm)

, (29)

where g(z) is analytic. Suppose we choose a contour C containing all M simple

C C’

Figure 1: Contours

poles. Consider the slightly different contour, C′, which contains no poles (see

figure 1). The contour C′ decomposes into a region equivalent to C, several long

straight lines and circular contours around each pole. In the limit that ǫ → 0,

we therefore have

0 =

∫

C′

dzf(z) =

∫

C

dzf(z)−
M
∑

m=1

∫

Cm

dzf(z), (30)
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Consequently,

∫

C′

dzf(z) =

∫

C

dzf(z) =
M
∑

m=1

∫

Cm

dzf(z). (31)

The right-hand side can be evaluated by

∫

C′

dzf(z) =

∫

C

dzf(z) =

M
∑

m=1

∫

Cm

dz
g(z)

∏

n6=m(z − zn)

1

z − zn

= 2πi

M
∑

m=1

g(zm)
∏

n6=m(zm − zn)
. (32)

because
g(z)

∏

n6=m(z − zn)
(33)

is analytic in the domain containing the contour Cm.

We can formalize this result a little more with the following definition:

Definition: A residue of f(z) at zn for an mth order pole is given by

Resz=znf(z) =
1

(m− 1)!
lim
z→zn

dm−1

dzm−1
[(z − zn)

mf(z)] . (34)

Therefore, in this language we have

∮

C

dz

2πi
f(z) =

∑

m

Resz=zmf(z), (35)

where the sum is over the poles contained.

5.1 Example 1

Consider the integral

I =

∫ π

−π

dθ
1

1 + 3cos2θ
. (36)

Wd can rewrite this integral as a contour integral for a specific contour, the

unit circle defined by z(θ) = eiθ. In particular, note that ∂θz = dθieiθ = dθiz

so that

I =

∫

C

dz

iz

1

1 + 3/4(z + 1/z)2

=
4

3

∫

C

dz

i

z

z4 + 10/3z2 + 1
. (37)
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The integrand is a meromorphic function with poles defined by

z2 = −5

3
±
√

25/9− 9/9 = −5

3
± 4

3
= −1

3
or − 3. (38)

Therefore, z = ±i/
√
3 and z = ±i

√
3 are the four poles. Two of these poles are

contained within the unit circle. Therefore,

I =
8π

3

[ −i/3

(3 + 1/3)(−2i/3)
+

i/3

(3 + 1/3)(2i/3)

]

=
8π

3

3

10
=

4π

5
. (39)

5.2 Example 2

Another integral is

I = lim
R→∞

∫ R

−R

dk

2π

eixk

k2 +m2
. (40)

This two can be written as a contour integral using the contour z(k) = k. Then

we have

I =

∫

C

dz

2π

eixz

(z − im)(z + im)
. (41)

To do this integral, we consider a modifying our contour by adding a second

contour, which we call CR, defined by z(θ) = Reiθ, where θ ranges from 0 to π.

Thus, this arc lives entirely in the upper half of the complex plane. In particular,

Imz(θ) > 0. Therefore,

∫

C+CR

dz

2π

eixz

(z − im)(z + im)
=

∫

C

dz

2π

eixz

(z − im)(z + im)
(42)

+

∫

CR

dz

2π

eixz

(z − im)(z + im)
.

Note that

∫

CR

dz

2π

eixz

(z − im)(z + im)
=

∫ π

0

dθ

2π
iReiθ

eixReiθ

R2e2iθ +m2
. (43)

As long as x > 0, the integrand vanishes as R → ∞. Therefore,

lim
R→∞

∫

C+CR

dz

2π

eixz

(z − im)(z + im)
= I. (44)

Since the contour contains the pole z = im, we have

I = ie−xm 1

2im
=

1

2m
e−xm, x > 0. (45)
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If x < 0, we instead have to choose our contour z(θ) = Reiθ where θ ranges

from π to 2π. Then Imz(θ) < 0. Then we obtain

I =
1

2m
exm. (46)

Together, we see that

I =
1

2m
e−m|x|. (47)

5.3 Antiderivatives

In real analysis, we have
∫ x

0

dy f ′(y) = f(x) − f(0). (48)

That is, derivatives and integrals are, sort of, inverses of each other. In complex

analysis we have contour integrals and derivatives of holomorphic functions.

The question is, is there a similar statement in complex analysis.

Let f(z) be a holomorphic function in a domain D and let F (z) be a holo-

morphic function such that ∂F (z) = f(z). Then let’s compute
∫

C

dzf(z) (49)

for a contour between points z1 and z2. In particular, let the contour range

from z(ξ1) = z1 to z(ξ2) = z2. Then

∫

C

dzf(z) =

∫ ξ2

ξ1

dξ∂ξz(ξ)f [z(ξ)] =

∫ ξ2

ξ1

dξ∂ξ {F [z(ξ)]} = F (z2)− F (z1). (50)

6 Principle Value

Let’s suppose f(z) is meromorphic and |f(z)| → 0 at infinite (in the upper half

plane). Then consider

I =

∫ ∞

−∞

dx
f(z)

x− x0
, (51)

where x and x0 is real. If x0 wasn’t on the real axis, we could close the contour

in the upper half plane and do this as a contour integral. But it appears that we

cannot – at last not obviously. The only reasonable solution is to push the pole

slightly off the contour (well, any other solution that makes sense is equivalent

to this anyway). Let’s define

Iǫ =

∫ ∞

−∞

dx
(x − x0)f(x)

(x − x0)2 + ǫ2
. (52)
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Then limǫ→0+ Iǫ is defined as the principle value of I. This is denoted as

P

∫ ∞

−∞

dx
f(z)

x− x0
. (53)

Now let’s evaluate Iǫ for small ǫ. We have

z − x0

(z − x0)2 + ǫ2
=

z − x0

(z − x0 − iǫ)(z − x0 + iǫ)

=
1

z − x0 + iǫ
+

iǫ

(z − x0 − iǫ)(z − x0 + iǫ)
. (54)

Note that the first term has a pole at x0− iǫ which is outside the contour we’ve

established but the second term has a pole at x0+ iδ. Then we can perform the

contour integral associated with Iǫ as

Iǫ =

∮

C

dz
f(z)

z − x0 + iǫ
+ 2πif(x0 + iǫ)

iǫ

2iǫ
. (55)

Then

P

∫ ∞

−∞

dx
f(z)

x− x0
= limǫ→0+

∮

C

dz
f(z)

z − x0 + iǫ
+ iπf(x0) (56)

An interesting exercise is to show that the limit ǫ → 0− gives the same overall

result.

Finally, we define

P

∮

C

dz
f(z)

z − x0
(57)

to be the result of displacing the pole slightly inside the contour.

6.1 Fun fact

Here’s a fun fact. Suppose that f(z) is holomorphic in the upper half-plane.

Then

P

∫ ∞

−∞

dx
f(z)

x− x0
= limǫ→0+

∮

C

dz
f(z)

z − x0 + iǫ
+ iπf(x0)

= iπf(x0). (58)

Let’s now write f(z) = u(z) + iv(z). Then

u(x0) =
1

π
P

∫ ∞

−∞

dx
v(z)

x− x0
(59)

v(x0) = − 1

π
P

∫ ∞

−∞

dx
u(z)

x− x0
(60)
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7 Logarithms and branch points

We want to define the natural logarithm, ln z to be the inverse of ez. In other

words,

eln z = z. (61)

What can we say about the function ln z? For one thing, ei2π = 1 implies that

ln z can only be defined up to 2πi. That is, ln z is multiply-valued. That, in

itself, is odd. That means that

ln ez = z + i2πn, (62)

for some integer n.

Now let’s look at ∂eln z = 1. By the chain rule, (∂ ln z) eln z = z(∂ ln z) = 1.

Therefore ∂ ln z = 1/z. A nice way to think about ln z is

ln z − ln z1 =

∫

C

dw

w
, (63)

where C is a contour that starts at z1 and goes to z. We can see the multival-

uedness by taking the unit circle as a contour, so that

ln z − ln z1 = 2πi. (64)

Now choose a contour starting on the real axis at point z1 = r going to

z = reiθ. Then

ln[reiθ ]− ln r = iθ + 2πiN, (65)

where N is the number of times the contour goes around the origin until it

reaches z. Finally, we have

ln z = ln r + iθ + 2πiN. (66)

The origin is a branch point. If we insist (and eventually we won’t have

to) that ln z should be single valued, then ln z must have a line along which it

is discontinuous. Such a line is called a branch cut.

Let’s now be specific. We define a ray z(r) = reiθ0 along which ln z will be

discontinuous. We can then define ln z by integrating along a suitable contour.

Let’s start on the real axis at point r (or, if θ0 = 0, just above it real axis).

Then

ln z = ln r +

∫

R

dz

z

= ln r + iθ, θ < θ0. (67)
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This is fine so long as the contour doesn’t cross the branch cut. To get to a

point on the other side of the branch cut, we integrate along the other direction,

ln z = ln r +

∫ −θ

0

dξ. (68)

Working with branch cuts is not too difficult when we can deform our contours

to avoid them. Notice that the discontinuity across the branch cut is always the

same – 2πi.

7.1 Other functions with branch points

Consider the function z1/2. Integrating along a circular contour around the

origin gives
∮

dzz1/2 = iR3/2

∫ 2π

0

dθe3iθ/2 = −4

3
R3/2. (69)

This represents the fact that the square root can be multiply valued. More

specifically, note that z1/2 = e(1/2) ln z. Since ln z requires a branch cut across

which it appears to have a discontinuity of 2πi, z1/2 has a discontinuity of

eiπ = −1. Every time you circle the branch point, you pick up a factor of −1. If

you traverse the branch point twice, however, z1/2 returns to its original value.

With the branch cuts, square roots do not always follow the rules you know

and love. For example,
√
zw 6= √

z
√
w when we choose the branch cuts along

the negative real axis. Why? Because the right-hand side is not defined on the

negative real axis – both square roots have an issue – but the left-hand side is

because zw is positive on the negative real axis.

7.2 An integral with a branch cut

Consider the integral

I =

∫ 1

0

dx
√

x(1− x)
. (70)

We need to cook up an analytic function and a contour integral that gives the

answer to this integral. The first problem we face is that there is no unique

way to do this. For example, should f(z) =
√

z(1− z), f(z) =
√
z
√
1− z or

f(z) = z
√

1− 1/z? Well, a clue is seen in the integral itself. The first choice,

f(z) =
√

z(1− z) has a branch point at 0 and 1, as does
√
z
√
1− z.

One the other hand, the advantage of f(z) = z
√

1− 1/z is that it is com-

posed of an analytic function, z, and a function with a branch point at z = 1. It
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is also well-defined along the real axis between 0 and 1, which is key for making

sense of the integral. This makes the computation easier. Let’s also choose the

branch cut along the negative real axis. Then we have

I =

∫

C

dz
1

z
√

1− 1/z
. (71)

Let’s look more carefully at what happens as z = x + iy. Then 1 − 1/z =

1− 1/(x+ iy) = 1− (x− iy)/(x2 + y2) = (x2 −x)/(x2 + y2)+ iy/(x2 + y2). The

real part of this expression is negative when x is between 0 and 1. Therefore,

Therefore,

lim
y→0

f(x+ iy) = sgn(y)

(

i
1

x

1
√

1− 1/x

)

. (72)

But this is as we expect – the branch cut we choice induces a discontinuity in

the integrand. Here is the cool thing – consider a rectangular contour that goes

around the branch cut but stays a distance ǫ from it. This traverses the branch

cut above and below it. Since we want to avoid going through the branch cut,

we must contain the pole at z = 0 as well – therefore, we conclude

2i

∫ 1

0

dx
√

x(1 − x)
=

∮

C

dzf(z) = 2πi (73)

where the last equality is from the residue theorem. Hence, I = π.

15


