
Physics 605: Integral transforms

Due: never

1 From Fourier series to transforms

Let’s start with the Hilbert space of smooth functions periodic in the range

[−L,L) with inner product

〈f |g〉 =

∫ L/2

−L/2
dx f̄(x)g(x). (1)

Since the operator i∂x is self-adjoint, its eigenfunctions form a basis for the

Hilbert space. These induce a basis of orthonormal functions, B = {e2iπmx/L/
√
L}.

This means, in particular, that

f(x) =

∞∑
m=−∞

cm√
L
e2πimx/L (2)

and

cm =

∫ L/2

−L/2
dx

1√
L
e−2πimx/Lf(x). (3)

Our intention is to try to take the limit that L → ∞. Before we do this,

let’s define a “function” F (x) such that F (2πm/L) = cm/
√
L. Then

f(x) =
1

L

∞∑
m=−∞

F (2πm/L)e2πimx/L (4)

F (2πm/L) =

∫ L/2

−L/2
dxe−2πimx/Lf(x). (5)

Let’s define km = (2π/L)m. Then ∆k = 2π/L is the spacing between adjacent

points.

Let’s finally write

f(x) =
1

2π

∞∑
m=−∞

∆k F (2πm/L)e2πimx/L. (6)

Now we can take the limit that L → ∞. In that limit, ∆k → 0. We see that

Eq. (6) is the definition of a Riemann integral for the function F (k). Having
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rewritten things so conveniently, taking the limit that L→∞ gives

F (k) =

∫ ∞
−∞

dxe−ikxf(x) (7)

f(x) =

∫ ∞
−∞

dk

2π
eikxF (k). (8)

These relations define the Fourier transform. Note that F (k) has units of

f(x) times length and k has units of 1/L.

Let’s check, explicitly, that these are inverses of each other. Then

f(x) =

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dx′ eik(x−x
′)f(x′). (9)

If we can switch the order of the integrals then∫ ∞
−∞

dk

2π
eik(x−x

′) = δ(x− x′). (10)

This calculation also tells us something about what functions we are “allowed”

to Fourier transform. These are functions for which the integrals converge suf-

ficiently nicely that the order of integrals can be switched in the above

Sometimes we denote the Fourier transform as F [f ](k) and its inverse as

F−1[F ](x).

1.1 Properties of the Fourier transform

Here are some of the important properties of the Fourier transform.

Theorem: F [∂xf ] = ikF [f ](k).

proof:

∫ ∞
−∞

dxe−ikx∂xf(x) = −
∫ ∞
−∞

dx
[
∂xe
−ikx] f(x)

= ik

∫ ∞
−∞

dxe−ikxf(x). (11)

Indeed, we can integrate-by-parts ad nauseum to prove

F [∂nxf ] = (ik)nF [f ](k). (12)

Theorem: (Convolution) F [f(x)g(x)](k) =
∫
dq
2πF [f ](q)F [g](k − q).

proof:
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∫ ∞
−∞

dxe−ikxf(x)g(x) =

∫ ∞
−∞

dx e−ikxg(x)

∫ ∞
−∞

dq

2π
eiqxF [f ](q)

=

∫
dq

2π
F (q)

∫ ∞
−∞

dx e−i(k−q)xg(x)

=

∫
dq

2π
F [f ](q)F [g](k − q).

Theorem: (Convolution 2) F−1[F (q)G(q)](x) =
∫
dx′F−1[F ](x′)F−1[G](x −

x′).

proof:

∫ ∞
−∞

dk

2π
eikxF (k)g(k) =

∫ ∞
−∞

dk

2π
eikxG(k)

∫ ∞
−∞

dx′e−ikx
′
F−1[F ](x′)

=

∫
dx′G(k)

∫ ∞
−∞

dk

2π
eik(x−x

′)f(x′)

=

∫
dx′F−1[G](x− x′)F−1[F ](x′).

2 Green Functions from Fourier Transforms

Consider the equation for the forced, damped simple harmonic oscillator,

∂2t h(t) + γ∂th(t) + ω2
0h(t) = f(t). (13)

Suppose we Fourier transform both sides of this equation. By convention, in-

stead of using the variable k, we’ll use ω since this is a Fourier transform in time.

We will keep the same signs for our Fourier transforms as previously defined,

however. On the right-hand side, F [f ](ω) ≡ F (ω). On the left-hand side,(
−ω2 + iγω + ω2

0

)
H(ω) = F (ω), (14)

where F [h](ω) = H(ω). Our differential equation therefore becomes algebraic

in “Fourier space.” Then we have

H(ω) =
F (ω)

−ω2 + iγω + ω2
0

. (15)

If we Fourier transform back, the convolution theorem tells us that

h(t) =

∫
dt′ G(t− t′)f(t′), (16)
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where

G(x) =

∫ ∞
−∞

dω

2π

eiωt

−ω2 + iγω + ω2
0

(17)

Eq. (16) is the equation defining a Green function while Eq. (17) gives us an

integral expression for precisely that Green function.

To really drive this home, let’s see what happens when we act on Eq. (17)

with ∂2t + γ∂t + ω2
0 . Then we obtain

(
∂2t + γ∂t + ω2

0

) ∫ ∞
−∞

dω

2π

eiω(t−t
′)

−ω2 + iγω + ω2
0

=

∫ ∞
−∞

dω

2π

(
−ω2 + iγω + ω2

0

)
eiω(t−t

′)

−ω2 + iγω + ω2
0

=

∫ ∞
−∞

dω

2π
eiω(t−t

′) = δ(t− t′).

This is precisely what we defined our Green function to be previously.

Now we can solve for the Green function by directly solving the equation

∂2tG(t) + γ∂tG(t) + ω2
0G(t) = δ(t− t′). (18)

However, we may also obtain the Green function directly by doing the inverse

Fourier transform. To do the integral, we turn it into an integral on the complex

plane on a contour lying on the real axis. The integrand has two poles,

ω =
i

2
γ ±

√
ω2
0 − γ2/4. (19)

If ω2
0 > 0 and γ > 0, the imaginary part of these poles is always positive.

The contour integral we want to do is

G(t− t′) =

∫ ∞
−∞

dω

2π

eiω(t−t
′)

−ω2 + iγω + ω2
0

= lim
R→∞

{∫
C

dw

2π

ei(t−t
′)w

−ω2 + iγω + ω2
0

−
∫
dθiReiθ

ei(t−t
′)Reiθ

−R2e2iθ + iγReiθ + ω2
0

}
. (20)

If t − t′ < 0, we close the contour below the real axis. Thus, we contain no

poles! If, on the other hand, t− t′ > 0, we close the contour above the real axis

and the contour contains two poles. The integral is then

G(t− t′) = −e−(t−t
′)γ/2

[
e−i(t−t

′)
√
ω2

0−γ2/4

γ − i
√

4ω2
0 − γ2

+
ei(t−t

′)
√
ω2

0−γ2/4

γ + i
√

4ω2
0 − γ2

]
Θ(t− t′)

= −Θ(t− t′)e
−(t−t′)γ/2

2ω2
0

[
γ cos

(
(t− t′)

√
ω2
0 − γ2/4

)
(21)

+
√

4ω2
0 − γ2 sin

(
(t− t′)

√
ω2
0 − γ2/4

)]
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2.1 Green function for the wave equation in 3D

We will now use these techniques to study the Green function for the wave

equation in three dimension. In particular, we are solving the equation(
−∇2 +

1

c2
∂2t

)
g(x, t;x′, t′) = 4πδ3(x− x′)δ(t− t′). (22)

There are four variables, so we proceed to Fourier transform as

G(k, ω) =

∫
d3xdt eik·re−iωtg(x, t). (23)

Notice the change in sign for ω; this is standard convention for the wave equation

that arises from considerations of special relativity. It changes nothing other

than the sign of ω.

In Fourier space, ∇h→ ikh and

δ3(x) =

∫
d3k

(2π)3
eik·x (24)

δ(t) =

∫
dt

2π
e−iωt. (25)

Therefore, the wave equation, in Fourier space, becomes(
k2 − ω2/c2

)
G(k, ω) = 4πe−ik·x

′+iωt′ . (26)

The solution in real space is found by Fourier transforming back as

g(x, t;x′, t′) =
2

(2π)3

∫
d3kdω

eik·(x−x
′)e−iω(t−t

′)

k2 − ω2/c2
. (27)

One thing we see immediately is that the Green function is actually a function

of x − x′ and t − t′. This turns out to be a consequence of the translation

symmetry of the equation.

The first thing we want to do is write this in spherical coordinates. If we

orient our coordinate system so that the vector x − x′ points along the north

pole, we have

g(x− x′, t− t′) =
2c2

(2π)3

∫ ∞
−∞

dω

∫ ∞
0

dkk2
∫ 1

−1
d(cos θ)dϕ

eik|x−x
′| cos θe−iω(t−t

′)

c2k2 − ω2

=
c2

π2|x− x′|

∫ ∞
−∞

dω

∫ ∞
0

dk
k

c2k2 − ω2
sin (k|x− x′|) e−iω(t−t

′)

=
c2

2π2i|x− x′|

∫ ∞
−∞

dω

∫ ∞
−∞

dk
ke−iω(t−t

′)

c2k2 − ω2
eik|x−x

′| (28)
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The form of this integral suggests turning it into a contour integral. The

difficulty is that the contour would be over the real axis but the poles of k are

±ω/c. The only solution to this problem is to deform the poles off the real axis

slightly and do the integral as a limit. The result is that we have four ways to

do this: (1) both poles can have slightly positive imaginary parts, (2) negative

imaginary parts, (3) +ω/c could move up while −ω/c moves down, or (4) −ω/c
moves up while ω/c moves down. How do we decide? Let’s choose one and

see what happens; then consider what would have happened if we had made a

different choice.

Suppose we move both poles upward to have a positive imaginary part.

Then, since |x−x′| > 0, we turn the integral over k into a contour integral along

a semicircle in the upper half-plane. Then when the radius of that semicircle

becomes infinite, the contribution from the arc vanishes (prove this!). Finally,

we have

g(x− x′, t− t′) =
1

2π|x− x′|

∫ ∞
−∞

dωe−iω(t−t
′+|x−x′|/c) (29)

+
1

2π|x− x′|

∫ ∞
−∞

dωe−iω(t−t
′−|x−x′|/c)

=
δ(t− t′ − |x− x′|/c)

|x− x′|
+
δ(t− t′ + |x− x′|/c)

|x− x′|
(30)

The first delta function is zero unless t = t′+ |x′−x|/c while the second is zero

except for t = t′ − |x− x′|/c.

3 Laplace transform

The Laplace transform is, sort of, a kind of one-sided Fourier transform. To

motivate it, consider the following equation:

(∂t +m)u(t) = 0 (31)

with initial condition u(0) = u0 and m > 0. We could incorporate this initial

condition with a slight modification of our equation to

(∂t +m)u(t) = u0δ(t). (32)

Integrating both sides by t around t = 0 and setting u(0−) = 0 gives us precisely

what we want. In Fourier space, we have

(iω +m)U(ω) = u0 (33)
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so that

u(t) =

∫ ∞
−∞

dω

2πi

u0
ω − im

eiωt = Θ(t)u0e
−mt. (34)

If m < 0, however, we obtain

u(t) =

∫ ∞
−∞

dω

2πi

u0
ω + i|m|

eiωt = Θ(−t)u0e|m|t. (35)

The Laplace transform allows us to solve this as an initial-value problem

directly. It is defined as follows:

U(w) =

∫ ∞
0−

dte−wtu(t) (36)

u(t) =

∫
C

dw

2πi
ewtU(w). (37)

We will have to choose the contour C very carefully. Let’s start by asking

whether these are truly inverses of each other. First,

u(t) =

∫
C

dw

2π
ewt
[∫ ∞

0−
dt′e−wt

′
u(t′)

]
=

∫ ∞
0−

dt′
∫
C

dw

2πi
ew(t−t′)u(t′). (38)

To make this work, we can choose a contour w(y) = α + iy integrated from

negative to positive infinity (we’ll come back to α in a second). In that case,∫
C

dw

2πi
ew(t−t′) =

1

2π

∫ ∞
−∞

dy eα(t−t
′)eiy(t−t

′) = δ(t− t′). (39)

Therefore, u(t) =
∫∞
0−
dt′δ(t− t′)u(t′).

Now let’s look at

U(w) =

∫ ∞
0−

dte−wt
[∫

C

dz

2πi
eztU(z)

]
=

∫
C

dz

2πi

U(z)

z − w
. (40)

This works so long as we choose a contour to the right of all the poles of U(w),

close our infinite contour to the left, and have Rez > Rew.

One of the advantages of working with the Laplace transform is∫ ∞
0−

dte−wt∂tf(t) = w

∫ ∞
0−

dte−wtf(t)− f(0). (41)
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So let’s look at the Laplace transform of our equation: (∂t + m)u(t) = 0.

After a Laplace transform, this becomes (w +m)U(w)− u(0) = 0. Therefore,

U(w) =
u(0)

w +m
(42)

so

u(t) = u(0)

∫
C

dw

2πi

ewt

w +m
. (43)

Since the contour is to the right of the pole at w = −m and the contour closes

to the left, we find u(t) = u(0)e−mt as we expect.

4 The Hankel transform

There are many other integral transforms available. The only other one we

want to mention is the Hankel transform. We already know that, in cylindrical

coordinates, we can solve Laplace’s equation with a series of Bessel functions.

The Hankel transform turns this series into an integral transform, much as the

Fourier transform is the continuum limit of a Fourier series. In particular,

Hν(k) =

∫ ∞
0

dr rJν(kr)h(r), ν > −1/2 (44)

h(r) =

∫ ∞
0

dk k Jν(kr)Hν(k). (45)

We can relate this transform to the Fourier transform in 2D. We write

H(kk̂) =

∫
drrdθeikr cos θh(r, θ). (46)

Now expand h(r, θ) =
∑∞
m=−∞ hm(r)eimθ so that

H(kk̂) =

∞∑
m=−∞

∫
drrdθ eikr cos θ+imθhm(r). (47)

Then

H(k) =

∞∑
m=−∞

∫ ∞
0

drrdθJm(kr)h−m(r), (48)

using the integral representation of the Bessel function∫ 2π

0

dθeikr cos θ−imθ = Jm(kr). (49)

The Hankel transform is what we get when we select the integral for one par-

ticular m.
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